Skip to main content
Log in

RNA-binding proteins in pluripotency, differentiation, and reprogramming

  • Review
  • Published:
Frontiers in Biology

Abstract

Embryonic stem cell maintenance, differentiation, and somatic cell reprogramming require the interplay of multiple pluripotency factors, epigenetic remodelers, and extracellular signaling pathways. RNA-binding proteins (RBPs) are involved in a wide range of regulatory pathways, from RNA metabolism to epigenetic modifications. In recent years we have witnessed more and more studies on the discovery of new RBPs and the assessment of their functions in a variety of biological systems, including stem cells. We review the current studies on RBPs and focus on those that have functional implications in pluripotency, differentiation, and/or reprogramming in both the human and mouse systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamo A, Sesé B, Boue S, Castaño J, Paramonov I, Barrero M J, Izpisua Belmonte J C (2011). LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat Cell Biol, 13(6): 652–659

    PubMed  CAS  Google Scholar 

  • Ahn E Y, DeKelver R C, Lo M C, Nguyen T A, Matsuura S, Boyapati A, Pandit S, Fu X D, Zhang D E (2011). SON controls cell-cycle progression by coordinated regulation of RNA splicing. Mol Cell, 42(2): 185–198

    PubMed  CAS  PubMed Central  Google Scholar 

  • Altschul S F, Gish W, Miller W, Myers E W, Lipman D J (1990). Basic local alignment search tool. J Mol Biol, 215(3): 403–410

    PubMed  CAS  Google Scholar 

  • Amarasinghe G K, De Guzman R N, Turner R B, Chancellor K J, Wu Z R, Summers M F (2000). NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the psi-RNA packaging signal. Implications for genome recognition. J Mol Biol, 301(2): 491–511

    CAS  Google Scholar 

  • Ang Y S, Tsai S Y, Lee D F, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, Wang J, Rendl M, Bernstein E, Schaniel C, Lemischka I R (2011). Wdr5 mediates self-renewal and reprogramming via the embryonic stemcell core transcriptional network. Cell, 145(2): 183–197

    PubMed  CAS  PubMed Central  Google Scholar 

  • Änkö M L, Müller-McNicoll M, Brandl H, Curk T, Gorup C, Henry I, Ule J, Neugebauer K M (2012). The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biol, 13(3): R17

    PubMed  PubMed Central  Google Scholar 

  • Anokye-Danso F, Trivedi C M, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber P J, Epstein J A, Morrisey E E (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8(4): 376–388

    PubMed  CAS  PubMed Central  Google Scholar 

  • Apostolou E, Hochedlinger K (2013). Chromatin dynamics during cellular reprogramming. Nature, 502(7472): 462–471

    PubMed  CAS  Google Scholar 

  • Atlasi Y, Mowla S J, Ziaee S A, Gokhale P J, Andrews P W (2008). OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells, 26(12): 3068–3074

    PubMed  CAS  Google Scholar 

  • Augui S, Nora E P, Heard E (2011). Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet, 12(6): 429–442

    PubMed  CAS  Google Scholar 

  • Baltz A G, Munschauer M, Schwanhäusser B, Vasile A, Murakawa Y, Schueler M, Youngs N, Penfold-Brown D, Drew K, Milek M, Wyler E, Bonneau R, Selbach M, Dieterich C, Landthaler M (2012). The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell, 46(5): 674–690

    PubMed  CAS  Google Scholar 

  • Balzer E, Heine C, Jiang Q, Lee V M, Moss E G (2010). LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro. Development, 137(6): 891–900

    PubMed  CAS  Google Scholar 

  • Bartel D P (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2): 215–233

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bedard K M, Daijogo S, Semler B L (2007). A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation. EMBO J, 26(2): 459–467

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bernstein E, Kim S Y, Carmell M A, Murchison E P, Alcorn H, Li M Z, Mills A A, Elledge S J, Anderson K V, Hannon G J (2003). Dicer is essential for mouse development. Nat Genet, 35(3): 215–217

    PubMed  CAS  Google Scholar 

  • Bond C S, Fox A H (2009). Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol, 186(5): 637–644

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bongso A, Fong C Y, Ng S C, Ratnam S (1994). Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod, 9(11): 2110–2117

    PubMed  CAS  Google Scholar 

  • Borozdin W, Wright M J, Hennekam R C, Hannibal M C, Crow Y J, Neumann T E, Kohlhase J (2004). Novel mutations in the gene SALL4 provide further evidence for acro-renal-ocular and Okihiro syndromes being allelic entities, and extend the phenotypic spectrum. J Med Genet, 41(8): e102

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boussadia O, Amiot F, Cases S, Triqueneaux G, Jacquemin-Sablon H, Dautry F (1997). Transcription of unr (upstream of N-ras) down-modulates N-ras expression in vivo. FEBS Lett, 420(1): 20–24

    PubMed  CAS  Google Scholar 

  • Boutet S C, Cheung T H, Quach N L, Liu L, Prescott S L, Edalati A, Iori K, Rando T A (2012). Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell, 10(3): 327–336

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boyer L A, Mathur D, Jaenisch R (2006). Molecular control of pluripotency. Curr Opin Genet Dev, 16(5): 455–462

    PubMed  CAS  Google Scholar 

  • Braeutigam C, Rago L, Rolke A, Waldmeier L, Christofori G, Winter J (2014). The RNA-binding protein Rbfox2: an essential regulator of EMT-driven alternative splicing and a mediator of cellular invasion. Oncogene, 33(9): 1082–1092

    PubMed  CAS  Google Scholar 

  • Brimacombe R, Stiege W, Kyriatsoulis A, Maly P (1988). Intra-RNA and RNA-protein cross-linking techniques in Escherichia coli ribosomes. Methods Enzymol, 164: 287–309

    PubMed  CAS  Google Scholar 

  • Brockdorff N (2013). Noncoding RNA and Polycomb recruitment. RNA, 19(4): 429–442

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brogna S, Wen J (2009). Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol, 16(2): 107–113

    PubMed  CAS  Google Scholar 

  • Brooks A N, Choi P S, deWaal L, Sharifnia T, Imielinski M, Saksena G, Pedamallu C S, Sivachenko A, Rosenberg M, Chmielecki J, Lawrence M S, DeLuca D S, Getz G, Meyerson M (2014). A pancancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS ONE, 9(1): e87361

    PubMed  PubMed Central  Google Scholar 

  • Buganim Y, Faddah D A, Jaenisch R (2013). Mechanisms and models of somatic cell reprogramming. Nat Rev Genet, 14(6): 427–439

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones R S, Zhang Y (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science, 298(5595): 1039–1043

    PubMed  CAS  Google Scholar 

  • Caretti G, Schiltz R L, Dilworth F J, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace F V, Hoffman E P, Tapscott S J, Sartorelli V (2006). The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell, 11: 547–560

    PubMed  CAS  Google Scholar 

  • Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann B M, Strein C, Davey N E, Humphreys D T, Preiss T, Steinmetz L M, Krijgsveld J, Hentze M W (2012). Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 149(6): 1393–1406

    PubMed  CAS  Google Scholar 

  • Cerase A, Smeets D, Tang Y A, Gdula M, Kraus F, Spivakov M, Moindrot B, Leleu M, Tattermusch A, Demmerle J, Nesterova T B, Green C, Otte A P, Schermelleh L, Brockdorff N (2014). Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proc Natl Acad Sci USA, 111(6): 2235–2240

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chamberlain S J, Yee D, Magnuson T (2008). Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells, 26(6): 1496–1505

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, Vrana J, Jones K, Grotewold L, Smith A (2007). Nanog safeguards pluripotency and mediates germline development. Nature, 450(7173): 1230–1234

    PubMed  CAS  Google Scholar 

  • Chambers I, Tomlinson S R (2009). The transcriptional foundation of pluripotency. Development, 136(14): 2311–2322

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chang K Y, Ramos A (2005). The double-stranded RNA-binding motif, a versatile macromolecular docking platform. FEBS J, 272(9): 2109–2117

    PubMed  CAS  Google Scholar 

  • Chen L L, Carmichael G G (2009). Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell, 35(4): 467–478

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cheong C Y, Lon Ng P M, Ponnampalam R, Tsai H H, Bourque G, Lufkin T (2011). In silico tandem affinity purification refines an Oct4 interaction list. Stem Cell Res Ther, 2(3): 26

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chi S W, Zang J B, Mele A, Darnell R B (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 460(7254): 479–486

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chia N Y, Chan Y S, Feng B, Lu X, Orlov Y L, Moreau D, Kumar P, Yang L, Jiang J, Lau M S, Huss M, Soh B S, Kraus P, Li P, Lufkin T, Lim B, Clarke N D, Bard F, Ng H H (2010). A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature, 468(7321): 316–320

    PubMed  CAS  Google Scholar 

  • Cho J, Chang H, Kwon S C, Kim B, Kim Y, Choe J, Ha M, Kim Y K, Kim V N (2012). LIN28A is a suppressor of ER-associated translation in embryonic stem cells. Cell, 151(4): 765–777

    PubMed  CAS  Google Scholar 

  • Choi H S, Kim WT, Kim H, Kim J J, Ko J Y, Lee SW, Jang Y J, Kim S J, Lee M J, Jung H S, Kzhyshkowska J, Um S J, Lee M Y, Lee S H, Kim C H, Ryu C J (2011). Identification and characterization of adenovirus early region 1B-associated protein 5 as a surface marker on undifferentiated human embryonic stem cells. Stem Cells Dev, 20(4): 609–620

    PubMed  CAS  Google Scholar 

  • Clemson C M, Hutchinson J N, Sara S A, Ensminger A W, Fox A H, Chess A, Lawrence J B (2009). An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell, 33(6): 717–726

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cordin O, Banroques J, Tanner N K, Linder P (2006). The DEAD-box protein family of RNA helicases. Gene, 367: 17–37

    PubMed  CAS  Google Scholar 

  • da Rocha S T, Boeva V, Escamilla-Del-Arenal M, Ancelin K, Granier C, Matias N R, Sanulli S, Chow J, Schulz E, Picard C, Kaneko S, Helin K, Reinberg D, Stewart A F, Wutz A, Margueron R, Heard E (2014). Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome. Mol Cell, 53(2): 301–316

    PubMed  Google Scholar 

  • Dai Q, Luan G, Deng L, Lei T, Kang H, Song X, Zhang Y, Xiao Z X, Li Q (2014). Primordial Dwarfism Gene Maintains Lin28 Expression to Safeguard Embryonic Stem Cells from Premature Differentiation. Cell Rep, 7(3): 735–746

    PubMed  CAS  Google Scholar 

  • Darnell R B (2010). HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA, 1(2): 266–286

    PubMed  CAS  PubMed Central  Google Scholar 

  • Das S, Jena S, Levasseur D N (2011). Alternative splicing produces Nanog protein variants with different capacities for self-renewal and pluripotency in embryonic stem cells. J Biol Chem, 286(49): 42690–42703

    PubMed  CAS  PubMed Central  Google Scholar 

  • Davidovich C, Zheng L, Goodrich K J, Cech T R (2013). Promiscuous RNA binding by Polycomb repressive complex 2. Nat Struct Mol Biol, 20(11): 1250–1257

    PubMed  CAS  Google Scholar 

  • Di Ruscio A, Ebralidze A K, Benoukraf T, Amabile G, Goff L A, Terragni J, Figueroa M E, De Figueiredo Pontes L L, Alberich-Jorda M, Zhang P, Wu M, D’Alò F, Melnick A, Leone G, Ebralidze K K, Pradhan S, Rinn J L, Tenen D G (2013). DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 503(7476): 371–376

    PubMed  Google Scholar 

  • Dichmann D S, Harland R M (2012). fus/TLS orchestrates splicing of developmental regulators during gastrulation. Genes Dev, 26(12): 1351–1363

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ding L, Paszkowski-Rogacz M, Nitzsche A, Slabicki M M, Heninger A K, de Vries I, Kittler R, Junqueira M, Shevchenko A, Schulz H, Hubner N, Doss M X, Sachinidis A, Hescheler J, Iacone R, Anastassiadis K, Stewart A F, Pisabarro M T, Caldarelli A, Poser I, Theis M, Buchholz F (2009). A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell Stem Cell, 4(5): 403–415

    PubMed  CAS  Google Scholar 

  • Dinger M E, Amaral P P, Mercer T R, Pang K C, Bruce S J, Gardiner B B, Askarian-Amiri M E, Ru K, Soldà G, Simons C, Sunkin S M, Crowe M L, Grimmond S M, Perkins A C, Mattick J S (2008). Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res, 18(9): 1433–1445

    PubMed  CAS  PubMed Central  Google Scholar 

  • Doyle M, Badertscher L, Jaskiewicz L, Güttinger S, Jurado S, Hugenschmidt T, Kutay U, Filipowicz W (2013). The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal. RNA, 19(9): 1238–1252

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dreyfuss G, Matunis M J, Piñol-Roma S, Burd C G (1993). hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem, 62(1): 289–321

    PubMed  CAS  Google Scholar 

  • Edwards T A, Pyle S E, Wharton R P, Aggarwal A K (2001). Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell, 105(2): 281–289

    PubMed  CAS  Google Scholar 

  • Elatmani H, Dormoy-Raclet V, Dubus P, Dautry F, Chazaud C, Jacquemin-Sablon H (2011). The RNA-binding protein Unr prevents mouse embryonic stem cells differentiation toward the primitive endoderm lineage. Stem Cells, 29(10): 1504–1516

    PubMed  CAS  Google Scholar 

  • Elkon R, Ugalde A P, Agami R (2013). Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet, 14(7): 496–506

    PubMed  CAS  Google Scholar 

  • Evans M J, Kaufman M H (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819): 154–156

    PubMed  CAS  Google Scholar 

  • Fagoonee S, Bearzi C, Di Cunto F, Clohessy J G, Rizzi R, Reschke M, Tolosano E, Provero P, Pandolfi P P, Silengo L, Altruda F (2013). The RNA-binding protein ESRP1 fine-tunes the expression of pluripotency-related factors in mouse embryonic stem cells. PLoS ONE, 8(8): e72300

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fagoonee S, Hobbs RM, De Chiara L, Cantarella D, Piro RM, Tolosano E, Medico E, Provero P, Pandolfi P P, Silengo L, Altruda F (2010). Generation of functional hepatocytes from mouse germ line cell-derived pluripotent stem cells in vitro. Stem Cells Dev, 19(8): 1183–1194

    PubMed  CAS  Google Scholar 

  • Filipovska A, Razif M F, Nygård K K, Rackham O (2011). A universal code for RNA recognition by PUF proteins. Nat Chem Biol, 7(7): 425–427

    PubMed  CAS  Google Scholar 

  • Flavell S W, Kim T K, Gray J M, Harmin D A, Hemberg M, Hong E J, Markenscoff-Papadimitriou E, Bear D M, Greenberg M E (2008). Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron, 60(6): 1022–1038

    PubMed  CAS  PubMed Central  Google Scholar 

  • Florea L, Hartzell G, Zhang Z, Rubin GM, Miller W (1998). A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res, 8(9): 967–974

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fox A H, Lam Y W, Leung A K, Lyon C E, Andersen J, Mann M, Lamond A I (2002). Paraspeckles: a novel nuclear domain. Curr Biol, 12(1): 13–25

    PubMed  CAS  Google Scholar 

  • Fox A H, Lamond A I (2010). Paraspeckles. Cold Spring Harb Perspect Biol, 2(7): a000687

    PubMed  PubMed Central  Google Scholar 

  • Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O’Hanlon D, Sung H K, Alvarez M, Talukder S, Pan Q, Mazzoni E O, Nedelec S, Wichterle H, Woltjen K, Hughes T R, Zandstra P W, Nagy A, Wrana J L, Blencowe B J (2011). An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell, 147(1): 132–146

    PubMed  CAS  Google Scholar 

  • Galgano A, Forrer M, Jaskiewicz L, Kanitz A, Zavolan M, Gerber A P (2008). Comparative analysis of mRNA targets for human PUFfamily proteins suggests extensive interaction with the miRNA regulatory system. PLoS ONE, 3(9): e3164

    PubMed  PubMed Central  Google Scholar 

  • García M A, Meurs E F, Esteban M (2007). The dsRNA protein kinase PKR: virus and cell control. Biochimie, 89(6-7): 799–811

    PubMed  Google Scholar 

  • Gerber A P, Luschnig S, Krasnow M A, Brown P O, Herschlag D (2006). Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc Natl Acad Sci USA, 103(12): 4487–4492

    PubMed  CAS  PubMed Central  Google Scholar 

  • Glisovic T, Bachorik J L, Yong J, Dreyfuss G (2008). RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett, 582(14): 1977–1986

    PubMed  CAS  PubMed Central  Google Scholar 

  • Godin K S, Varani G (2007). How arginine-rich domains coordinate mRNA maturation events. RNA Biol, 4(2): 69–75

    PubMed  CAS  Google Scholar 

  • Gomez J A, Wapinski O L, Yang Y W, Bureau J F, Gopinath S, Monack D M, Chang H Y, Brahic M, Kirkegaard K (2013). The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-Γ locus. Cell, 152(4): 743–754

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gopalakrishnan S, Van Emburgh B O, Shan J, Su Z, Fields C R, Vieweg J, Hamazaki T, Schwartz P H, Terada N, Robertson K D (2009). A novel DNMT3B splice variant expressed in tumor and pluripotent cells modulates genomic DNA methylation patterns and displays altered DNA binding. Mol Cancer Res, 7(10): 1622–1634

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gupta R A, Shah N, Wang K C, Kim J, Horlings HM, Wong D J, TsaiM C, Hung T, Argani P, Rinn J L, Wang Y, Brzoska P, Kong B, Li R, West R B, van de Vijver M J, Sukumar S, Chang H Y (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291): 1071–1076

    PubMed  CAS  PubMed Central  Google Scholar 

  • Guttman M, Donaghey J, Carey B W, Garber M, Grenier J K, Munson G, Young G, Lucas A B, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn J L, Root D E, Lander E S (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477(7364): 295–300

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp A C, Munschauer M, Ulrich A, Wardle G S, Dewell S, Zavolan M, Tuschl T (2010a). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 141(1): 129–141

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp A C, Munschauer M, Ulrich A, Wardle G S, Dewell S, Zavolan M, Tuschl T (2010b). PAR-CliP—a method to identify transcriptome-wide the binding sites of RNA binding proteins. J Vis Exp, (41): 2034

    PubMed  Google Scholar 

  • Hafner M, Max K E, Bandaru P, Morozov P, Gerstberger S, Brown M, Molina H, Tuschl T (2013). Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition. RNA, 19(5): 613–626

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hagan J P, Piskounova E, Gregory R I (2009). Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol, 16(10): 1021–1025

    PubMed  CAS  PubMed Central  Google Scholar 

  • Han H, Irimia M, Ross P J, Sung H K, Alipanahi B, David L, Golipour A, Gabut M, Michael I P, Nachman E N, Wang E, Trcka D, Thompson T, O’Hanlon D, Slobodeniuc V, Barbosa-Morais N L, Burge C B, Moffat J, Frey B J, Nagy A, Ellis J, Wrana J L, Blencowe B J (2013). MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature, 498(7453): 241–245

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hanina S A, Mifsud W, Down T A, Hayashi K, O’Carroll D, Lao K, Miska E A, Surani M A (2010). Genome-wide identification of targets and function of individual MicroRNAs in mouse embryonic stem cells. PLoS Genet, 6(10): e1001163

    PubMed  PubMed Central  Google Scholar 

  • Hanna J H, Saha K, Jaenisch R (2010). Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell, 143(4): 508–525

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hata K, Nishimura R, Muramatsu S, Matsuda A, Matsubara T, Amano K, Ikeda F, Harley V R, Yoneda T (2008). Paraspeckle protein p54nrb links Sox9-mediated transcription with RNA processing during chondrogenesis in mice. J Clin Invest, 118(9): 3098–3108

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hayashi K, Lopes S M, Tang F, Surani M A (2008). Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell, 3(4): 391–401

    PubMed  CAS  Google Scholar 

  • Heo I, Joo C, Cho J, Ha M, Han J, Kim V N (2008). Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell, 32(2): 276–284

    PubMed  CAS  Google Scholar 

  • Heo I, Joo C, Kim Y K, Ha M, Yoon M J, Cho J, Yeom K H, Han J, Kim V N (2009). TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell, 138(4): 696–708

    PubMed  CAS  Google Scholar 

  • Hu G, Kim J, Xu Q, Leng Y, Orkin S H, Elledge S J (2009). A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev, 23(7): 837–848

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huang Y, Gattoni R, Stévenin J, Steitz J A (2003). SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol Cell, 11(3): 837–843

    PubMed  CAS  Google Scholar 

  • Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E, Pettett R, Pocock M, Potter S, Rust A, Schmidt E, Searle S, Slater G, Smith J, Spooner W, Stabenau A, Stalker J, Stupka E, Ureta-Vidal A, Vastrik I, Clamp M (2002). The Ensembl genome database project. Nucleic Acids Res, 30(1): 38–41

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hutvágner G, McLachlan J, Pasquinelli A E, Bálint E, Tuschl T, Zamore P D (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293(5531): 834–838

    PubMed  Google Scholar 

  • Hutvagner G, Simard M J (2008). Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol, 9(1): 22–32

    PubMed  CAS  Google Scholar 

  • Imielinski M, Berger A H, Hammerman P S, Hernandez B, Pugh T J, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A, Sougnez C, Auclair D, Lawrence M S, Stojanov P, Cibulskis K, Choi K, de Waal L, Sharifnia T, Brooks A, Greulich H, Banerji S, Zander T, Seidel D, Leenders F, Ansén S, Ludwig C, Engel-Riedel W, Stoelben E, Wolf J, Goparju C, Thompson K, Winckler W, Kwiatkowski D, Johnson B E, Jänne P A, Miller V A, Pao W, Travis W D, Pass H I, Gabriel S B, Lander E S, Thomas R K, Garraway L A, Getz G, Meyerson M (2012). Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell, 150(6): 1107–1120

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ishigaki S, Masuda A, Fujioka Y, Iguchi Y, Katsuno M, Shibata A, Urano F, Sobue G, Ohno K (2012). Position-dependent FUS-RNA interactions regulate alternative splicing events and transcriptions. Sci Rep, 2: 529

    PubMed  PubMed Central  Google Scholar 

  • Ivanov I, Lo K C, Hawthorn L, Cowell J K, Ionov Y (2007). Identifying candidate colon cancer tumor suppressor genes using inhibition of nonsense-mediated mRNA decay in colon cancer cells. Oncogene, 26(20): 2873–2884

    PubMed  CAS  Google Scholar 

  • Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, Lemischka I R (2006). Dissecting self-renewal in stem cells with RNA interference. Nature, 442(7102): 533–538

    PubMed  CAS  Google Scholar 

  • Iwabuchi K A, Yamakawa T, Sato Y, Ichisaka T, Takahashi K, Okita K, Yamanaka S (2011). ECAT11/L1td1 is enriched in ESCs and rapidly activated during iPSC generation, but it is dispensable for the maintenance and induction of pluripotency. PLoS ONE, 6(5): e20461

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jangi M, Boutz P L, Paul P, Sharp P A (2014). Rbfox2 controls autoregulation in RNA-binding protein networks. Genes Dev, 28(6): 637–651

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jensen K B, Darnell R B (2008). CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. Methods Mol Biol, 488: 85–98

    PubMed  CAS  Google Scholar 

  • Ji Y, Tulin A V (2012). Poly(ADP-ribose) controls DE-cadherin-dependent stem cell maintenance and oocyte localization. Nat Commun, 3: 760

    PubMed  PubMed Central  Google Scholar 

  • Ji Z, Lee J Y, Pan Z H, Jiang B J, Tian B (2009). Progressive lengthening of 3’ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci USA, 106(17): 9535–9535

    CAS  Google Scholar 

  • Ji Z, Tian B (2009). Reprogramming of 3’ Untranslated Regions of mRNAs by Alternative Polyadenylation in Generation of Pluripotent Stem Cells from Different Cell Types. PLoS ONE, 4(12): e8419

    PubMed  PubMed Central  Google Scholar 

  • Johnson J M, Castle J, Garrett-Engele P, Kan Z, Loerch P M, Armour C D, Santos R, Schadt E E, Stoughton R, Shoemaker D D (2003). Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 302(5653): 2141–2144

    PubMed  CAS  Google Scholar 

  • Judson R L, Babiarz J E, Venere M, Blelloch R (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol, 27(5): 459–461

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kaneko S, Bonasio R, Saldaña-Meyer R, Yoshida T, Son J, Nishino K, Umezawa A, Reinberg D (2014). Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin. Mol Cell, 53(2): 290–300

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kaneko S, Li G, Son J, Xu C F, Margueron R, Neubert T A, Reinberg D (2010). Phosphorylation of the PRC2 component Ezh2 is cell cycleregulated and up-regulates its binding to ncRNA. Genes Dev, 24(23): 2615–2620

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kaneko S, Son J, Shen S S, Reinberg D, Bonasio R (2013). PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat Struct Mol Biol, 20(11): 1258–1264

    PubMed  CAS  Google Scholar 

  • Kanellopoulou C, Muljo S A, Kung A L, Ganesan S, Drapkin R, Jenuwein T, Livingston D M, Rajewsky K (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev, 19(4): 489–501

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kanhere A, Viiri K, Araújo C C, Rasaiyaah J, Bouwman R D, Whyte W A, Pereira C F, Brookes E, Walker K, Bell G W, Pombo A, Fisher A G, Young R A, Jenner R G (2010). Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol Cell, 38(5): 675–688

    PubMed  CAS  PubMed Central  Google Scholar 

  • Karwacki-Neisius V, Göke J, Osorno R, Halbritter F, Ng J H., Weiße A Y., Wong F C., Gagliardi A, Mullin N P., Festuccia N, Colby D, Tomlinson S R., Ng H H., Chambers I (2013). Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog. Cell Stem Cell, 12(5): 531–545

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kashyap V, Rezende N C, Scotland K B, Shaffer S M, Persson J L, Gudas L J, Mongan N P (2009). Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev, 18(7): 1093–1108

    PubMed  CAS  PubMed Central  Google Scholar 

  • Katahira J (2012). mRNA export and the TREX complex. Biochim Biophys Acta, 1819(6): 507–513

    PubMed  CAS  Google Scholar 

  • Khalil A M, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein B E, van Oudenaarden A, Regev A, Lander E S, Rinn J L (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA, 106(28): 11667–11672

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kiledjian M, Dreyfuss G (1992). Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J, 11(7): 2655–2664

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim B M, Choi M Y (2012). Non-canonical microRNAs miR-320 and miR-702 promote proliferation in Dgcr8-deficient embryonic stem cells. Biochem Biophys Res Commun, 426(2): 183–189

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim D H, Saetrom P, Snøve O Jr, Rossi J J (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA, 105(42): 16230–16235

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kirmizis A, Bartley S M, Kuzmichev A, Margueron R, Reinberg D, Green R, Farnham P J (2004). Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev, 18(13): 1592–1605

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 11(9): 597–610

    PubMed  CAS  Google Scholar 

  • Kunarso G, Wong K Y, Stanton L W, Lipovich L (2008). Detailed characterization of the mouse embryonic stem cell transcriptome reveals novel genes and intergenic splicing associated with pluripotency. BMC Genomics, 9(1): 155

    PubMed  PubMed Central  Google Scholar 

  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002). Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev, 16(22): 2893–2905

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kwon S C, Yi H, Eichelbaum K, Föhr S, Fischer B, You K T, Castello A, Krijgsveld J, Hentze M W, Kim V N (2013). The RNA-binding protein repertoire of embryonic stem cells. Nat Struct Mol Biol, 20(9): 1122–1130

    PubMed  CAS  Google Scholar 

  • Lackford B, Yao C, Charles G M, Weng L, Zheng X, Choi E A, Xie X, Wan J, Xing Y, Freudenberg J M, Yang P, Jothi R, Hu G, Shi Y (2014). Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal. EMBO J, 33(8): 878–889

    PubMed  CAS  Google Scholar 

  • Lander E S, Linton L M, Birren B, Nusbaum C, Zody M C, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov J P, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin J C, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston R H, Wilson R K, Hillier L W, McPherson J D, Marra M A, Mardis E R, Fulton L A, Chinwalla A T, Pepin K H, Gish W R, Chissoe S L, Wendl M C, Delehaunty K D, Miner T L, Delehaunty A, Kramer J B, Cook L L, Fulton R S, Johnson D L, Minx P J, Clifton S W, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng J F, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs R A, Muzny D M, Scherer S E, Bouck J B, Sodergren E J, Worley K C, Rives C M, Gorrell J H, Metzker M L, Naylor S L, Kucherlapati R S, Nelson D L, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith D R, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee H M, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis R W, Federspiel N A, Abola A P, Proctor M J, Myers R M, Schmutz J, Dickson M, Grimwood J, Cox D R, Olson M V, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans G A, Athanasiou M, Schultz R, Roe B A, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie W R, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey J A, Bateman A, Batzoglou S, Birney E, Bork P, Brown D G, Burge C B, Cerutti L, Chen H C, Church D, Clamp M, Copley R R, Doerks T, Eddy S R, Eichler E E, Furey T S, Galagan J, Gilbert J G, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson L S, Jones T A, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin E V, Korf I, Kulp D, Lancet D, Lowe T M, McLysaght A, Mikkelsen T, Moran J V, Mulder N, Pollara V J, Ponting C P, Schuler G, Schultz J, Slater G, Smit A F, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf Y I, Wolfe K H, Yang S P, Yeh R F, Collins F, Guyer M S, Peterson J, Felsenfeld A, Wetterstrand K A, Patrinos A, Morgan M J, de Jong P, Catanese J J, Osoegawa K, Shizuya H, Choi S, Chen Y J, and the International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822): 860–921

    PubMed  CAS  Google Scholar 

  • Leeb M, Dietmann S, Paramor M, Niwa H, Smith A (2014). Genetic exploration of the exit from self-renewal using haploid embryonic stem cells. Cell Stem Cell, 14(3): 385–393

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leung A K, Young A G, Bhutkar A, Zheng G X, Bosson A D, Nielsen C B, Sharp P A (2011). Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol, 18(2): 237–244

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q, Qin B, Xu J, Li W, Yang J, Gan Y, Qin D, Feng S, Song H, Yang D, Zhang B, Zeng L, Lai L, Esteban M A, Pei D (2010). A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 7(1): 51–63

    PubMed  CAS  Google Scholar 

  • Li X, Li L, Pandey R, Byun J S, Gardner K, Qin Z, Dou Y (2012). The histone acetyltransferase MOF is a key regulator of the embryonic stem cell core transcriptional network. Cell Stem Cell, 11(2): 163–178 doi:10.1016/j.stem.2012.04.023

    PubMed  PubMed Central  Google Scholar 

  • Li X, Song J, Yi C (2014). Genome-wide mapping of cellular protein-RNA interactions enabled by chemical crosslinking. Genomics Proteomics Bioinformatics, 12(2): 72–78

    PubMed  CAS  Google Scholar 

  • Linder P, Jankowsky E (2011). From unwinding to clamping — the DEAD box RNA helicase family. Nat Rev Mol Cell Biol, 12(8): 505–516

    PubMed  CAS  Google Scholar 

  • Liu Y, Lee M R, Timani K, He J J, Broxmeyer H E (2012). Tip110 maintains expression of pluripotent factors in and pluripotency of human embryonic stem cells. Stem Cells Dev, 21(6): 829–833

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu Y, Timani K, Ou X, Broxmeyer H E, He J J (2013). C-MYC controlled TIP110 protein expression regulates OCT4 mRNA splicing in human embryonic stem cells. Stem Cells Dev, 22(5): 689–694

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lou H, Neugebauer K M, Gagel R F, Berget S M (1998). Regulation of alternative polyadenylation by U1 snRNPs and SRp20. Mol Cell Biol, 18(9): 4977–4985

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lu X, Göke J, Sachs F, Jacques P E, Liang H, Feng B, Bourque G, Bubulya P A, Ng H H (2013). SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells. Nat Cell Biol, 15(10): 1141–1152

    PubMed  CAS  Google Scholar 

  • Lytle J R, Yario T A, Steitz J A (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci USA, 104(23): 9667–9672

    PubMed  CAS  PubMed Central  Google Scholar 

  • Macias S, Plass M, Stajuda A, Michlewski G, Eyras E, Cáceres J F (2012). DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nat Struct Mol Biol, 19(8): 760–766

    PubMed  CAS  PubMed Central  Google Scholar 

  • Manley J L, Tacke R (1996). SR proteins and splicing control. Genes Dev, 10(13): 1569–1579

    PubMed  CAS  Google Scholar 

  • Margueron R, Reinberg D (2011). The Polycomb complex PRC2 and its mark in life. Nature, 469(7330): 343–349

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maris C, Dominguez C, Allain F H (2005). The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J, 272(9): 2118–2131

    PubMed  CAS  Google Scholar 

  • Marson A, Levine S S, Cole M F, Frampton G M, Brambrink T, Johnstone S, Guenther M G, Johnston W K, Wernig M, Newman J, Calabrese JM, Dennis LM, Volkert T L, Gupta S, Love J, Hannett N, Sharp P A, Bartel D P, Jaenisch R, Young R A (2008). Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 134(3): 521–533

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martin G R (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 78(12): 7634–7638

    PubMed  CAS  PubMed Central  Google Scholar 

  • Melton C, Judson R L, Blelloch R (2010). Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature, 463(7281): 621–626

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mihailovic M, Wurth L, Zambelli F, Abaza I, Militti C, Mancuso F M, Roma G, Pavesi G, Gebauer F (2012). Widespread generation of alternative UTRs contributes to sex-specific RNA binding by UNR. RNA, 18(1): 53–64

    PubMed  CAS  Google Scholar 

  • Modrek B, Resch A, Grasso C, Lee C (2001). Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res, 29(13): 2850–2859

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moran V A, Perera R J, Khalil A M (2012). Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res, 40(14): 6391–6400

    PubMed  CAS  PubMed Central  Google Scholar 

  • Morita S, Horii T, Kimura M, Goto Y, Ochiya T, Hatada I (2007). One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics, 89(6): 687–696

    PubMed  CAS  Google Scholar 

  • Morlando M, Dini Modigliani S, Torrelli G, Rosa A, Di Carlo V, Caffarelli E, Bozzoni I (2012). FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO J, 31(24): 4502–4510

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mueller A A, Cheung T H, Rando T A (2013). All’s well that ends well: alternative polyadenylation and its implications for stem cell biology. Curr Opin Cell Biol, 25(2): 222–232

    PubMed  CAS  PubMed Central  Google Scholar 

  • Murchison E P, Partridge J F, Tam O H, Cheloufi S, Hannon G J (2005). Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA, 102(34): 12135–12140

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakagawa S, Naganuma T, Shioi G, Hirose T (2011). Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol, 193(1): 31–39

    PubMed  CAS  PubMed Central  Google Scholar 

  • Närvä E, Rahkonen N, Emani M R, Lund R, Pursiheimo J P, Nästi J, Autio R, Rasool O, Denessiouk K, Lähdesmäki H, Rao A, Lahesmaa R (2012). RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells, 30(3): 452–460

    PubMed  PubMed Central  Google Scholar 

  • Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco M A (2002). Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods, 26(2): 182–190

    PubMed  CAS  Google Scholar 

  • Niwa H, Miyazaki J, Smith A G (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 24(4): 372–376

    PubMed  CAS  Google Scholar 

  • Ohta S, Nishida E, Yamanaka S, Yamamoto T (2013a). Global splicing pattern reversion during somatic cell reprogramming. Cell Reports, 5(2): 357–366

    PubMed  CAS  Google Scholar 

  • Ohta S, Nishida E, Yamanaka S, Yamamoto T (2013b). Global splicing pattern reversion during somatic cell reprogramming. Cell Reports, 5(2): 357–366

    PubMed  CAS  Google Scholar 

  • Ostareck D H, Ostareck-Lederer A, Wilm M, Thiele B J, Mann M, Hentze M W (1997). mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3’ end. Cell, 89: 597–606

    PubMed  CAS  Google Scholar 

  • Pádua Alves C, Fonseca A S, Muys B R, de Barros E Lima Bueno R, Bürger M C, de Souza J E, Valente V, Zago M A, Silva W A Jr (2013). Brief report: The lincRNA Hotair is required for epithelial-tomesenchymal transition and stemness maintenance of cancer cell lines. Stem Cells, 31(12): 2827–2832

    PubMed  Google Scholar 

  • Park J M, Kohn M J, Bruinsma M W, Vech C, Intine R V, Fuhrmann S, Grinberg A, Mukherjee I, Love P E, Ko M S, DePamphilis M L, Maraia R J (2006). The multifunctional RNA-binding protein La is required for mouse development and for the establishment of embryonic stem cells. Mol Cell Biol, 26(4): 1445–1451

    PubMed  CAS  PubMed Central  Google Scholar 

  • Park Y, Lee JM, Hwang M Y, Son G H, Geum D (2013). NonO binds to the CpG island of oct4 promoter and functions as a transcriptional activator of oct4 gene expression. Mol Cells, 35(1): 61–69

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pasini D, Bracken A P, Hansen J B, Capillo M, Helin K (2007). The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol, 27(10): 3769–3779

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pasini D, Cloos P A, Walfridsson J, Olsson L, Bukowski J P, Johansen J V, Bak M, Tommerup N, Rappsilber J, Helin K (2010). JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature, 464(7286): 306–310

    PubMed  CAS  Google Scholar 

  • Pelham H R, Brown D D (1980). A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc Natl Acad Sci USA, 77(7): 4170–4174

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peng J C, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A, Wysocka J (2009). Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell, 139(7): 1290–1302

    PubMed  PubMed Central  Google Scholar 

  • Peng S, Chen L L, Lei X X, Yang L, Lin H, Carmichael G G, Huang Y (2011). Genome-wide studies reveal that Lin28 enhances the translation of genes important for growth and survival of human embryonic stem cells. Stem Cells, 29(3): 496–504

    PubMed  CAS  Google Scholar 

  • Piskounova E, Polytarchou C, Thornton J E, LaPierre R J, Pothoulakis C, Hagan J P, Iliopoulos D, Gregory R I (2011). Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell, 147(5): 1066–1079

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prasanth K V, Prasanth S G, Xuan Z, Hearn S, Freier S M, Bennett C F, Zhang M Q, Spector D L (2005). Regulating gene expression through RNA nuclear retention. Cell, 123(2): 249–263

    PubMed  CAS  Google Scholar 

  • Pritsker M, Doniger T T, Kramer L C, Westcot S E, Lemischka I R (2005). Diversification of stem cell molecular repertoire by alternative splicing. Proc Natl Acad Sci USA, 102(40): 14290–14295

    PubMed  CAS  PubMed Central  Google Scholar 

  • Qiu C, Ma Y, Wang J, Peng S, Huang Y (2010). Lin28-mediated posttranscriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res, 38(4): 1240–1248

    PubMed  CAS  PubMed Central  Google Scholar 

  • Quenault T, Lithgow T, Traven A (2011). PUF proteins: repression, activation and mRNA localization. Trends Cell Biol, 21(2): 104–112

    PubMed  CAS  Google Scholar 

  • Radzisheuskaya A, Chia G B, dos Santos R L, Theunissen TW, Castro L F, Nichols J, Silva J C (2013). A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nat Cell Biol, 15(6): 579–590

    PubMed  CAS  PubMed Central  Google Scholar 

  • Radzisheuskaya A, Silva J C (2014). Do all roads lead to Oct4? the emerging concepts of induced pluripotency. Trends Cell Biol, 24(5): 275–284

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rajyaguru P, Parker R (2012). RGG motif proteins: modulators of mRNA functional states. Cell Cycle, 11(14): 2594–2599

    PubMed  CAS  Google Scholar 

  • Ramakrishna S, Suresh B, Lim K H, Cha B H, Lee S H, Kim K S, Baek K H (2011). PEST motif sequence regulating human NANOG for proteasomal degradation. Stem Cells Dev, 20(9): 1511–1519

    PubMed  CAS  Google Scholar 

  • Rao S, Zhen S, Roumiantsev S, McDonald L T, Yuan G C, Orkin S H (2010). Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol, 30(22): 5364–5380

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ray D, Kazan H, Chan E T, Peña Castillo L, Chaudhry S, Talukder S, Blencowe B J, Morris Q, Hughes T R (2009). Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol, 27(7): 667–670

    PubMed  CAS  Google Scholar 

  • Ray D, Kazan H, Cook K B, Weirauch M T, Najafabadi H S, Li X, Gueroussov S, Albu M, Zheng H, Yang A, Na H, Irimia M, Matzat L H, Dale R K, Smith S A, Yarosh C A, Kelly S M, Nabet B, Mecenas D, Li W, Laishram R S, Qiao M, Lipshitz H D, Piano F, Corbett A H, Carstens R P, Frey B J, Anderson R A, Lynch KW, Penalva L O, Lei E P, Fraser A G, Blencowe B J, Morris Q D, Hughes T R (2013). A compendium of RNA-binding motifs for decoding gene regulation. Nature, 499(7457): 172–177

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reynolds N, Collier B, Maratou K, Bingham V, Speed R M, Taggart M, Semple C A, Gray N K, Cooke H J (2005). Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells. Hum Mol Genet, 14(24): 3899–3909

    PubMed  CAS  Google Scholar 

  • Rinn J L, Kertesz M, Wang J K, Squazzo S L, Xu X, Brugmann S A, Goodnough L H, Helms J A, Farnham P J, Segal E, Chang H Y(2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7): 1311–1323

    PubMed  CAS  PubMed Central  Google Scholar 

  • Salomonis N, Nelson B, Vranizan K, Pico A R, Hanspers K, Kuchinsky A, Ta L, Mercola M, Conklin B R (2009). Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors. PLOS Comput Biol, 5(11): e1000553

    PubMed  PubMed Central  Google Scholar 

  • Salomonis N, Schlieve C R, Pereira L, Wahlquist C, Colas A, Zambon A C, Vranizan K, Spindler M J, Pico A R, Cline M S, Clark T A, Williams A, Blume J E, Samal E, Mercola M, Merrill B J, Conklin B R (2010). Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA, 107(23): 10514–10519

    PubMed  CAS  PubMed Central  Google Scholar 

  • Samavarchi-Tehrani P, Golipour A, David L, Sung H K, Beyer T A, Datti A, Woltjen K, Nagy A, Wrana J L (2010). Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell, 7(1): 64–77

    PubMed  CAS  Google Scholar 

  • Sandberg R, Neilson J R, Sarma A, Sharp P A, Burge C B (2008). Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science, 320(5883): 1643–1647

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saunders A, Faiola F, Wang J (2013). Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells, 31(7): 1227–1236

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saunders A, Wang J (2014). Export and expression: mRNAs deliver new messages for controlling pluripotency. Cell Stem Cell, 14(5): 549–550

    PubMed  CAS  Google Scholar 

  • Schulman B R, Esquela-Kerscher A, Slack F J (2005). Reciprocal expression of lin-41 and the microRNAs let-7 and mir-125 during mouse embryogenesis. Dev Dyn, 234(4): 1046–1054

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schulz E G, Heard E (2013). Role and control of X chromosome dosage in mammalian development. Curr Opin Genet Dev, 23(2): 109–115

    PubMed  CAS  Google Scholar 

  • Schulz E G, Meisig J, Nakamura T, Okamoto I, Sieber A, Picard C, Borensztein M, Saitou M, Blüthgen N, Heard E (2014). The two active X chromosomes in female ESCs block exit from the pluripotent state by modulating the ESC signaling network. Cell Stem Cell, 14(2): 203–216

    PubMed  CAS  Google Scholar 

  • Sheik Mohamed J, Gaughwin P M, Lim B, Robson P, Lipovich L (2010). Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA (New York, NY 16, 324–337

    Google Scholar 

  • Shekar P C, Naim A, Sarathi D P, Kumar S (2011). Argonaute-2-null embryonic stem cells are retarded in self-renewal and differentiation. J Biosci, 36(4): 649–657

    PubMed  CAS  Google Scholar 

  • Shen X, Kim W, Fujiwara Y, Simon M D, Liu Y, Mysliwiec M R, Yuan G C, Lee Y, Orkin S H (2009). Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell, 139(7): 1303–1314

    PubMed  PubMed Central  Google Scholar 

  • Shepard P J, Choi E A, Lu J, Flanagan L A, Hertel K J, Shi Y (2011). Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA, 17(4): 761–772

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shibayama M, Ohno S, Osaka T, Sakamoto R, Tokunaga A, Nakatake Y, Sato M, Yoshida N (2009). Polypyrimidine tract-binding protein is essential for early mouse development and embryonic stem cell proliferation. FEBS J, 276(22): 6658–6668

    PubMed  CAS  Google Scholar 

  • Simon B, Kirkpatrick J P, Eckhardt S, Reuter M, Rocha E A, Andrade-Navarro M A, Sehr P, Pillai R S, Carlomagno T (2011). Recognition of 2′-O-methylated 3′-end of piRNA by the PAZ domain of a Piwi protein. Structure, 19(2): 172–180

    PubMed  CAS  Google Scholar 

  • Singh G, Ricci E P, Moore M J (2014). RIPiT-Seq: a high-throughput approach for footprinting RNA:protein complexes. Methods, 65(3): 320–332

    PubMed  CAS  Google Scholar 

  • Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel C G, Zavolan M, Svoboda P, Filipowicz W (2008). MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol, 15(3): 259–267

    PubMed  CAS  Google Scholar 

  • Souquere S, Beauclair G, Harper F, Fox A, Pierron G (2010). Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol Biol Cell, 21(22): 4020–4027

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stefl R, Skrisovska L, Allain F H (2005). RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep, 6(1): 33–38

    PubMed  CAS  PubMed Central  Google Scholar 

  • Subramanian V, Klattenhoff C A, Boyer L A (2009). Screening for novel regulators of embryonic stem cell identity. Cell Stem Cell, 4(5): 377–378

    PubMed  CAS  Google Scholar 

  • Sugnet C W, Srinivasan K, Clark T A, O’Brien G, Cline M S, Wang H, Williams A, Kulp D, Blume J E, Haussler D, Ares M Jr (2006). Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLOS Comput Biol, 2(1): e4

    PubMed  PubMed Central  Google Scholar 

  • Sunwoo H, Dinger M E, Wilusz J E, Amaral P P, Mattick J S, Spector D L (2009). MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res, 19(3): 347–359

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tanaka T S (2009). Transcriptional heterogeneity in mouse embryonic stem cells. Reprod Fertil Dev, 21(1): 67–75

    PubMed  CAS  Google Scholar 

  • Tay Y, Zhang J, Thomson A M, Lim B, Rigoutsos I (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455(7216): 1124–1128

    PubMed  CAS  Google Scholar 

  • Teplova M, Patel D J (2008). Structural insights into RNA recognition by the alternative-splicing regulator muscleblind-like MBNL1. Nat Struct Mol Biol, 15(12): 1343–1351

    PubMed  CAS  Google Scholar 

  • Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones JM (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391): 1145–1147

    PubMed  CAS  Google Scholar 

  • Thornton J E, Chang H M, Piskounova E, Gregory R I (2012). Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA, 18(10): 1875–1885

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tian B, Manley J L (2013). Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci, 38(6): 312–320

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tian Y, Simanshu D K, Ma J B, Patel D J (2011). Structural basis for piRNA 2′-O-methylated 3′-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proc Natl Acad Sci USA, 108(3): 903–910

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tiscornia G, Izpisúa Belmonte J C (2010). MicroRNAs in embryonic stem cell function and fate. Genes Dev, 24(24): 2732–2741

    PubMed  CAS  PubMed Central  Google Scholar 

  • Toyooka Y, Shimosato D, Murakami K, Takahashi K, Niwa H (2008). Identification and characterization of subpopulations in undifferentiated ES cell culture. Development, 135(5): 909–918

    PubMed  CAS  Google Scholar 

  • Tsai M C, Manor O, Wan Y, Mosammaparast N, Wang J K, Lan F, Shi Y, Segal E, Chang H Y (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329(5992): 689–693

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tsai S C, Chang D F, Hong C M, Xia P, Senadheera D, Trump L, Mishra S, Lutzko C (2014). Induced overexpression of OCT4A in human embryonic stem cells increases cloning efficiency. Am J Physiol Cell Physiol, 306(12): C1108–C1118

    PubMed  CAS  Google Scholar 

  • Tsui S, Dai T, Warren S T, Salido E C, Yen P H (2000). Association of the mouse infertility factor DAZL1 with actively translating polyribosomes. Biol Reprod, 62(6): 1655–1660

    PubMed  CAS  Google Scholar 

  • Ule J, Jensen K, Mele A, Darnell R B (2005). CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods, 37(4): 376–386

    PubMed  CAS  Google Scholar 

  • Ule J, Jensen K B, Ruggiu M, Mele A, Ule A, Darnell R B (2003). CLIP identifies Nova-regulated RNA networks in the brain. Science, 302(5648): 1212–1215

    PubMed  CAS  Google Scholar 

  • Underwood J G, Boutz P L, Dougherty J D, Stoilov P, Black D L (2005). Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol Cell Biol, 25(22): 10005–10016

    PubMed  CAS  PubMed Central  Google Scholar 

  • Valente L, Nishikura K (2005). ADAR gene family and A-to-I RNA editing: diverse roles in posttranscriptional gene regulation. Prog Nucleic Acid Res Mol Biol, 79: 299–338

    PubMed  CAS  Google Scholar 

  • Valverde R, Edwards L, Regan L (2008). Structure and function of KH domains. FEBS J, 275(11): 2712–2726

    PubMed  CAS  Google Scholar 

  • Venables J P, Brosseau J P, Gadea G, Klinck R, Prinos P, Beaulieu J F, Lapointe E, Durand M, Thibault P, Tremblay K, Rousset F, Tazi J, Abou Elela S, Chabot B (2013a). RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. Mol Cell Biol, 33(2): 396–405

    PubMed  CAS  PubMed Central  Google Scholar 

  • Venables J P, Lapasset L, Gadea G, Fort P, Klinck R, Irimia M, Vignal E, Thibault P, Prinos P, Chabot B, Abou Elela S, Roux P, Lemaitre J M, Tazi J (2013b). MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation. Nat Commun, 4: 2480

    PubMed  Google Scholar 

  • Venter J C, Adams M D, Myers E W, Li P W, Mural R J, Sutton G G, Smith H O, Yandell M, Evans C A, Holt R A, Gocayne J D, Amanatides P, Ballew R M, Huson D H, Wortman J R, Zhang Q, Kodira C D, Zheng X H, Chen L, Skupski M, Subramanian G, Thomas P D, Zhang J, Gabor Miklos G L, Nelson C, Broder S, Clark A G, Nadeau J, McKusick V A, Zinder N, Levine A J, Roberts R J, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian A E, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman T J, Higgins M E, Ji R R, Ke Z, Ketchum K A, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov G V, Milshina N, Moore H M, Naik A K, Narayan V A, Neelam B, Nusskern D, Rusch D B, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng M L, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers Y H, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint N N, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril J F, Guigó R, Campbell M J, Sjolander K V, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang Y H, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X (2001). The sequence of the human genome. Science, 291(5507): 1304–1351

    PubMed  CAS  Google Scholar 

  • Wang K C, Chang H Y (2011). Molecular mechanisms of long noncoding RNAs. Mol Cell, 43(6): 904–914

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang K C, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie B R, Protacio A, Flynn R A, Gupta R A, Wysocka J, Lei M, Dekker J, Helms J A, Chang H Y (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 472(7341): 120–124

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang L, Miao Y L, Zheng X, Lackford B, Zhou B, Han L, Yao C, Ward J M, Burkholder A, Lipchina I, Fargo D C, Hochedlinger K, Shi Y, Williams C J, Hu G (2013). The THO complex regulates pluripotency gene mRNA export and controls embryonic stem cell self-renewal and somatic cell reprogramming. Cell Stem Cell, 13(6): 676–690

    PubMed  CAS  Google Scholar 

  • Wang X, Chang Y, Li Y, Zhang X, Goodrich D W (2006). Thoc1/Hpr1/p84 is essential for early embryonic development in the mouse. Mol Cell Biol, 26(11): 4362–4367

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang X, McLachlan J, Zamore P D, Hall T M (2002). Modular recognition of RNA by a human pumilio-homology domain. Cell, 110(4): 501–512

    PubMed  CAS  Google Scholar 

  • Wang X, Zamore P D, Hall T M (2001). Crystal structure of a Pumilio homology domain. Mol Cell, 7(4): 855–865

    PubMed  CAS  Google Scholar 

  • Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet, 39(3): 380–385

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weyn-Vanhentenryck S M, Mele A, Yan Q, Sun S, Farny N, Zhang Z, Xue C, Herre M, Silver P A, Zhang M Q, Krainer A R, Darnell R B, Zhang C (2014). HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Reports, 6(6): 1139–1152

    PubMed  CAS  Google Scholar 

  • Whyte W A, Bilodeau S, Orlando D A, Hoke H A, Frampton G M, Foster C T, Cowley S M, Young R A (2012). Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature, 482(7384): 221–225

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wilbert M L, Huelga S C, Kapeli K, Stark T J, Liang T Y, Chen S X, Yan B Y, Nathanson J L, Hutt K R, Lovci M T, Kazan H, Vu A Q, Massirer K B, Morris Q, Hoon S, Yeo G W (2012). LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance. Mol Cell, 48(2): 195–206

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wolin S L, Cedervall T (2002). The La protein. Annu Rev Biochem, 71(1): 375–403

    PubMed  CAS  Google Scholar 

  • Wong R C, Ibrahim A, Fong H, Thompson N, Lock L F, Donovan P J (2011). L1TD1 is a marker for undifferentiated human embryonic stem cells. PLoS ONE, 6(4): e19355

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu J Q, Habegger L, Noisa P, Szekely A, Qiu C, Hutchison S, Raha D, Egholm M, Lin H, Weissman S, Cui W, Gerstein M, Snyder M (2010). Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci USA, 107(11): 5254–5259

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xu X, Tan X, Lin Q, Schmidt B, Engel W, Pantakani D V (2013). Mouse Dazl and its novel splice variant functions in translational repression of target mRNAs in embryonic stem cells. Biochim Biophys Acta, 1829(5): 425–435

    PubMed  CAS  Google Scholar 

  • Xue Y, Ouyang K, Huang J, Zhou Y, Ouyang H, Li H, Wang G, Wu Q, Wei C, Bi Y, Jiang L, Cai Z, Sun H, Zhang K, Zhang Y, Chen J, Fu X D (2013). Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell, 152(1–2): 82–96

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yan K S, Yan S, Farooq A, Han A, Zeng L, Zhou M M (2003). Structure and conserved RNA binding of the PAZ domain. Nature, 426(6965): 468–474

    PubMed  Google Scholar 

  • Yang YW, Flynn R A, Chen Y, Qu K, Wan B, Wang K C, Lei M, Chang H Y (2014). Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. eLife, 3: e02046

    PubMed  PubMed Central  Google Scholar 

  • Yeganeh M, Seyedjafari E, Kamrani F A, Ghaemi N (2013). RNA-binding protein Rbm47 binds to Nanog in mouse embryonic stem cells. Mol Biol Rep, 40(7): 4391–4396

    PubMed  CAS  Google Scholar 

  • Yeo G W, Coufal N G, Liang T Y, Peng G E, Fu X D, Gage F H (2009). An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol, 16(2): 130–137

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yeo G W, Xu X, Liang T Y, Muotri A R, Carson C T, Coufal N G, Gage F H (2007). Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLOS Comput Biol, 3(10): 1951–1967

    PubMed  CAS  Google Scholar 

  • Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M, Chalkidis G, Suzuki Y, Shiosaka M, Kawahata R, Yamaguchi T, Otsu M, Obara N, Sakata-Yanagimoto M, Ishiyama K, Mori H, Nolte F, Hofmann W K, Miyawaki S, Sugano S, Haferlach C, Koeffler H P, Shih L Y, Haferlach T, Chiba S, Nakauchi H, Miyano S, Ogawa S (2011). Frequent pathway mutations of splicing machinery in myelodysplasia. Nature, 478(7367): 64–69

    PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917–1920

    PubMed  CAS  Google Scholar 

  • Zahler A M, Lane W S, Stolk J A, Roth M B (1992). SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev, 6(5): 837–847

    PubMed  CAS  Google Scholar 

  • Zhang M, Zamore P D, Carmo-Fonseca M, Lamond A I, Green M R(1992). Cloning and intracellular localization of the U2 small nuclear ribonucleoprotein auxiliary factor small subunit. Proc Natl Acad Sci USA, 89(18): 8769–8773

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao J, Ohsumi T K, Kung J T, Ogawa Y, Grau D J, Sarma K, Song J J, Kingston R E, Borowsky M, Lee J T (2010). Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell, 40(6): 939–953

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao J, Sun B K, Erwin J A, Song J J, Lee J T (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 322(5902): 750–756

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhong X Y, Wang P, Han J, Rosenfeld M G, Fu X D (2009). SR proteins in vertical integration of gene expression from transcription to RNA processing to translation. Mol Cell, 35(1): 1–10

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zwieb C, Brimacombe R (1978). RNA-protein cross-linking in Eschericia coli 30S ribosomal subunits: a method for the direct analysis of the RNA regions involved in the cross-links. Nucleic Acids Res, 5(4): 1189–1206

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guallar, D., Wang, J. RNA-binding proteins in pluripotency, differentiation, and reprogramming. Front. Biol. 9, 389–409 (2014). https://doi.org/10.1007/s11515-014-1326-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-014-1326-y

Keywords

Navigation