Skip to main content
Log in

Surgical decompression in acute spinal cord injury: A review of clinical evidence, animal model studies, and potential future directions of investigation

  • Review
  • Published:
Frontiers in Biology

Abstract

The goal for treatment in acute spinal cord injury (SCI) is to reduce the extent of secondary damage and facilitate neurologic regeneration and functional recovery. Although multiple studies have investigated potential new therapies for the treatment of acute SCI, outcomes and management protocols aimed at ameliorating neurologic injury in patients remain ineffective. More recent clinical and basic science research have shown surgical interventions to be a potentially valuable modality for treatment; however, the role and timing of surgical decompression, in addition to the optimal surgical intervention, remain one of the most controversial topics pertaining to surgical treatment of acute SCI. As an increasing number of potential treatment modalities emerge, animal models are pivotal for investigating its clinical application and translation into human trials. This review critically appraises the available literature for both clinical and basic science studies to highlight the extent of investigation that has occurred, specific therapies considered, and potential areas for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackery A, Tator C, Krassioukov A (2004). A global perspective on spinal cord injury epidemiology. J Neurotrauma, 21(10): 1355–1370

    Article  PubMed  Google Scholar 

  • Amar A P, Levy M L (1999). Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery, 44(5): 1027–1039, discussion 1039–1040

    Article  PubMed  CAS  Google Scholar 

  • Baptiste D C, Fehlings M G (2008). Emerging drugs for spinal cord injury. Expert Opin Emerg Drugs, 13(1): 63–80

    Article  PubMed  CAS  Google Scholar 

  • Bötel U, Gläser E, Niedeggen A (1997). The surgical treatment of acute spinal paralysed patients. Spinal Cord, 35(7): 420–428

    Article  PubMed  Google Scholar 

  • Bracken MB, Shepard MJ, Collins WF, Holford T R, Young W, Baskin D S, Eisenberg H M, Flamm E, Leo-Summers L, Maroon J, Marshall L F, Perot P L Jr, Piepmeier J, Sonntag V K H, Wagner F C, Wilberger J E, Winn H R (1990). A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med, 322(20): 1405–1411

    Article  PubMed  CAS  Google Scholar 

  • Bracken M B, Shepard M J, Holford T R, Leo-Summers L, Aldrich E F, Fazl M, Fehlings M, Herr D L, Hitchon P W, Marshall L F, Nockels R P, Pascale V, Perot P L Jr, Piepmeier J, Sonntag V K, Wagner F, Wilberger J E, Winn H R, Young W (1997). Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA, 277(20): 1597–1604

    Article  PubMed  CAS  Google Scholar 

  • Campagnolo D I, Esquieres R E, Kopacz K J (1997). Effect of timing of stabilization on length of stay and medical complications following spinal cord injury. J Spinal Cord Med, 20(3): 331–334

    PubMed  CAS  Google Scholar 

  • Carlson G D, Gorden C D, Oliff H S, Pillai J J, LaManna J C (2003). Sustained spinal cord compression: part I: time-dependent effect on long-term pathophysiology. J Bone Joint Surg Am, 85-A(1): 86–94

    PubMed  Google Scholar 

  • Carlson G D, Minato Y, Okada A, Gorden C D, Warden K E, Barbeau J M, Biro C L, Bahnuik E, Bohlman H H, Lamanna J C (1997). Early time-dependent decompression for spinal cord injury: vascular mechanisms of recovery. J Neurotrauma, 14(12): 951–962

    Article  PubMed  CAS  Google Scholar 

  • Cengiz S L, Kalkan E, Bayir A, Ilik K, Basefer A (2008). Timing of thoracolomber spine stabilization in trauma patients; impact on neurological outcome and clinical course. A real prospective (rct) randomized controlled study. Arch Orthop Trauma Surg, 128(9): 959–966

    PubMed  Google Scholar 

  • Delamarter R B, Sherman J, Carr J B (1995). Pathophysiology of spinal cord injury. Recovery after immediate and delayed decompression. J Bone Joint Surg Am, 77(7): 1042–1049

    PubMed  CAS  Google Scholar 

  • Desai A, Ball P A, Bekelis K, Lurie J, Mirza S K, Tosteson T D, Weinstein J N (2011). SPORT: does incidental durotomy affect longterm outcomes in cases of spinal stenosis? Neurosurgery, 69(1): 38–44, discussion 44

    Article  PubMed  Google Scholar 

  • Dimar J R 2nd, Glassman S D, Raque G H, Zhang Y P, Shields C B (1999). The influence of spinal canal narrowing and timing of decompression on neurologic recovery after spinal cord contusion in a rat model. Spine (Phila Pa 1976), 24(16): 1623–1633

    Article  Google Scholar 

  • Duh M S, Shepard M J, Wilberger J E, Bracken M B (1994). The effectiveness of surgery on the treatment of acute spinal cord injury and its relation to pharmacological treatment. Neurosurgery, 35(2): 240–248, discussion 248–249

    Article  PubMed  CAS  Google Scholar 

  • Fehlings M G, Arvin B (2009). The timing of surgery in patients with central spinal cord injury. J Neurosurg Spine, 10(1): 1–2

    Article  PubMed  Google Scholar 

  • Fehlings M G, Vaccaro A, Wilson J R, Singh A, W Cadotte D, Harrop J S, Aarabi B, Shaffrey C, Dvorak M, Fisher C, Arnold P, Massicotte E M, Lewis S, Rampersaud R (2012). Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS ONE, 7(2): e32037

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guest J, Eleraky M A, Apostolides P J, Dickman C A, Sonntag V K (2002). Traumatic central cord syndrome: results of surgical management. J Neurosurg, 97(1 Suppl): 25–32

    PubMed  Google Scholar 

  • Hall E D, Braughler J M (1982). Glucocorticoid mechanisms in acute spinal cord injury: a review and therapeutic rationale. Surg Neurol, 18(5): 320–327

    Article  PubMed  CAS  Google Scholar 

  • Hawryluk GW, Rowland J, Kwon B K, Fehlings MG (2008). Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus, 25(5): E14

    Article  PubMed  Google Scholar 

  • Hurlbert R J (2000). Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg, 93(1 Suppl): 1–7

    PubMed  CAS  Google Scholar 

  • Iannotti C, Zhang Y P, Shields L B, Han Y, Burke D A, Xu X M, Shields C B (2006). Dural repair reduces connective tissue scar invasion and cystic cavity formation after acute spinal cord laceration injury in adult rats. J Neurotrauma, 23(6): 853–865

    Article  PubMed  Google Scholar 

  • Jones C F, Cripton P A, Kwon B K (2012a). Gross morphological changes of the spinal cord immediately after surgical decompression in a large animal model of traumatic spinal cord injury. Spine, 37(15): E890–E899

    Article  PubMed  Google Scholar 

  • Jones C F, Newell R S, Lee J H, Cripton P A, Kwon B K (2012b). The pressure distribution of cerebrospinal fluid responds to residual compression and decompression in an animal model of acute spinal cord injury. Spine, 37(23): E1422–E1431

    Article  PubMed  Google Scholar 

  • Juurlink B H, Paterson P G (1998). Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies. J Spinal Cord Med, 21(4): 309–334

    PubMed  CAS  Google Scholar 

  • Kirshblum S, Campagnolo D I, DeLisa J A (2002). Spinal cord medicine. Philadelphia: Lippincott Williams & Wilkins. x, 655 p. p.

  • Krengel WF 3rd, Anderson P A, Henley M B (1993). Early stabilization and decompression for incomplete paraplegia due to a thoracic-level spinal cord injury. Spine, 18(14 Supplement): 2080–2087

    Article  PubMed  Google Scholar 

  • Levi L, Wolf A, Rigamonti D, Ragheb J, Mirvis S, Robinson W L (1991). Anterior decompression in cervical spine trauma: does the timing of surgery affect the outcome? Neurosurgery, 29(2): 216–222

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Ashwell K W, Waite P (2000). Advances in secondary spinal cord injury: role of apoptosis. Spine, 25(14): 1859–1866

    Article  PubMed  CAS  Google Scholar 

  • Nagata S, Golstein P (1995). The Fas death factor. Science, 267(5203): 1449–1456

    Article  PubMed  CAS  Google Scholar 

  • Ng WP, Fehlings MG, Cuddy B, Dickman C, Fazl M, Green B, Hitchon P, Northrup B, Sonntag V, Wagner F, Tator C H (1999). Surgical treatment for acute spinal cord injury study pilot study #2: evaluation of protocol for decompressive surgery within 8 hours of injury. Neurosurg Focus, 6(1): e3

    Article  PubMed  CAS  Google Scholar 

  • Park E, Velumian A A, Fehlings M G (2004). The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma, 21(6): 754–774

    Article  PubMed  Google Scholar 

  • Perkins P G, Deane R H (1988). Long-term follow-up of six patients with acute spinal injury following dural decompression. Injury, 19(6): 397–401

    Article  PubMed  CAS  Google Scholar 

  • Pollard M E, Apple D F (2003). Factors associated with improved neurologic outcomes in patients with incomplete tetraplegia. Spine, 28(1): 33–39

    Article  PubMed  Google Scholar 

  • Profyris C, Cheema S S, Zang D, Azari MF, Boyle K, Petratos S (2004). Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis, 15(3): 415–436

    Article  PubMed  Google Scholar 

  • Rabinowitz R S, Eck J C, Harper C M Jr, Larson D R, Jimenez M A, Parisi J E, Friedman J A, Yaszemski M J, Currier B L (2008). Urgent surgical decompression compared to methylprednisolone for the treatment of acute spinal cord injury: a randomized prospective study in beagle dogs. Spine, 33(21): 2260–2268

    Article  PubMed  Google Scholar 

  • Rowland J W, Hawryluk G W, Kwon B, Fehlings M G (2008). Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus, 25(5): E2

    Article  PubMed  Google Scholar 

  • Schumacher H W, Wassmann H, Podlinski C (1988). Pseudomeningocele of the lumbar spine. Surg Neurol, 29(1): 77–78

    Article  PubMed  CAS  Google Scholar 

  • Smith J S, Anderson R, Pham T, Bhatia N, Steward O, Gupta R (2010). Role of early surgical decompression of the intradural space after cervical spinal cord injury in an animal model. J Bone Joint Surg Am, 92(5): 1206–1214

    Article  PubMed Central  PubMed  Google Scholar 

  • Tator C H (1991). Review of experimental spinal cord injury with emphasis on the local and systemic circulatory effects. Neurochirurgie, 37(5): 291–302

    PubMed  CAS  Google Scholar 

  • Tator C H, Fehlings M G (1991). Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg, 75(1): 15–26

    Article  PubMed  CAS  Google Scholar 

  • Tator C H, Fehlings M G, Thorpe K, Taylor W (1999). Current use and timing of spinal surgery for management of acute spinal surgery for management of acute spinal cord injury in North America: results of a retrospective multicenter study. J Neurosurg, 91(1 Suppl): 12–18

    PubMed  CAS  Google Scholar 

  • Tator C H, Koyanagi I (1997). Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg, 86(3): 483–492

    Article  PubMed  CAS  Google Scholar 

  • Vaccaro A R, Daugherty R J, Sheehan T P, Dante S J, Cotler J M, Balderston R A, Herbison G J, Northrup B E (1997). Neurologic outcome of early versus late surgery for cervical spinal cord injury. Spine, 22(22): 2609–2613

    Article  PubMed  CAS  Google Scholar 

  • Wilson J R, Singh A, Craven C, Verrier M C, Drew B, Ahn H, Ford M, Fehlings M G (2012). Early versus late surgery for traumatic spinal cord injury: the results of a prospective Canadian cohort study. Spinal Cord, 50(11): 840–843

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Feng Y P, Young W, You S W, Shen X F, Liu Y S, Ju G (2008). Early neurosurgical intervention of spinal cord contusion: an analysis of 30 cases. Chin Med J (Engl), 121(24): 2473–2478

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher B. Shields or Xiao-Ming Xu.

Additional information

These authors equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Walker, C.L., Zhang, Y.P. et al. Surgical decompression in acute spinal cord injury: A review of clinical evidence, animal model studies, and potential future directions of investigation. Front. Biol. 9, 127–136 (2014). https://doi.org/10.1007/s11515-014-1297-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-014-1297-z

Keywords

Navigation