Skip to main content
Log in

A computational approach to explore the functional missense mutations in the spindle check point protein Mad1

  • Research Article
  • Published:
Frontiers in Biology

Abstract

In this work, the most detrimental missense mutations of Mad1 protein that cause various types of cancer were identified computationally and the substrate binding efficiencies of those missense mutations were analyzed. Out of 13 missense mutations, IMutant 2.0, SIFTand PolyPhen programs identified 3 variants that were less stable, deleterious and damaging respectively. Subsequently, modeling of these 3 variants was performed to understand the change in their conformations with respect to the native Mad1 by computing their root mean squared deviation (RMSD). Furthermore, the native protein and the 3 mutants were docked with the binding partner Mad2 to explain the substrate binding efficiencies of those detrimental missense mutations. The docking studies identified that all the 3 mutants caused lower binding affinity for Mad2 than the native protein. Finally, normal mode analysis determined that the loss of binding affinity of these 3 mutants was caused by altered flexibility in the amino acids that bind to Mad2 compared with the native protein. Thus, the present study showed that majority of the substrate binding amino acids in those 3 mutants displayed loss of flexibility, which could be the theoretical explanation of decreased binding affinity between the mutant Mad1 and Mad2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bava K A, Gromiha M M, Uedaira H, Kitajima K, Sarai A (2004). ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Res, 32(90001 Database issue): D120–D121

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Battistuz T, Bhat T N, Bluhm WF, Bourne P E, Burkhardt K, Feng Z, Gilliland G L, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook J D, Zardecki C (2002). The Protein Data Bank. Acta Crystallogr D Biol Crystallogr, 58(Pt 6 No 1): 899–907

    Article  PubMed  Google Scholar 

  • Bharadwaj R, Yu H (2004). The spindle checkpoint, aneuploidy, and cancer. Oncogene, 23(11): 2016–2027

    Article  PubMed  CAS  Google Scholar 

  • Boeckmann B, Bairoch A, Apweiler R, Blatter M C, Estreicher A, Gasteiger E, Martin M J, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M (2003). The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res, 31(1): 365–370

    Article  PubMed  CAS  Google Scholar 

  • Brady DM, Hardwick K G (2000). Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function. Curr Biol, 10(11): 675–678

    Article  PubMed  CAS  Google Scholar 

  • Cahill D P, Lengauer C, Yu J, Riggins G J, Willson J K, Markowitz S D, Kinzler K W, Vogelstein B (1998). Mutations of mitotic checkpoint genes in human cancers. Nature, 392(6673): 300–303

    Article  PubMed  CAS  Google Scholar 

  • Capriotti E, Fariselli P, Casadio R (2005). I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res, 33(Web Server Web Server issue): W306–10

    PubMed  CAS  Google Scholar 

  • Carlson H A, McCammon J A (2000). Accommodating protein flexibility in computational drug design. Mol Pharmacol, 57(2): 213–218

    PubMed  CAS  Google Scholar 

  • Chao W C, Kulkarni K, Zhang Z, Kong E H, Barford D (2012). Structure of the mitotic checkpoint complex. Nature, 484(7393): 208–213

    Article  PubMed  CAS  Google Scholar 

  • Chen R H, Shevchenko A, Mann M, Murray A W (1998). Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J Cell Biol, 143(2): 283–295

    Article  PubMed  CAS  Google Scholar 

  • Chen R H, Waters J C, Salmon E D, Murray AW (1996). Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science, 274(5285): 242–246

    Article  PubMed  CAS  Google Scholar 

  • Chung E, Chen R H (2002). Spindle checkpoint requires Mad1-bound and Mad1-free Mad2. Mol Biol Cell, 13(5): 1501–1511

    Article  PubMed  CAS  Google Scholar 

  • Connolly M L (1983). Solvent-accessible surfaces of proteins and nucleic acids. Science, 221(4612): 709–713

    Article  PubMed  CAS  Google Scholar 

  • Delarue M, Dumas P (2004). On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models. Proc Natl Acad Sci USA, 101(18): 6957–6962

    Article  PubMed  CAS  Google Scholar 

  • Duhovny D, Nussinov R, Wolfson H J (2002). Efficient unbound docking of rigid molecules. In: Proceedings of the 2nd Workshop on Algorithms in Bioinformatics (WABI) Lecture Notes in Computer Science, Rome, Italy, 2452: 185–200

    Google Scholar 

  • Fava L L, Kaulich M, Nigg E A, Santamaria A (2011). Probing the in vivo function of Mad1:C-Mad2 in the spindle assembly checkpoint. EMBO J, 30(16): 3322–3336

    Article  PubMed  CAS  Google Scholar 

  • Gemma A, Seike M, Seike Y, Uematsu K, Hibino S, Kurimoto F, Yoshimura A, Shibuya M, Harris C C, Kudoh S (2000). Somatic mutation of the hBUB1 mitotic checkpoint gene in primary lung cancer. Genes Chromosomes Cancer, 29(3): 213–218

    Article  PubMed  CAS  Google Scholar 

  • Han J H, Kerrison N, Chothia C, Teichmann S A (2006). Divergence of interdomain geometry in two-domain proteins. Structure, 14(5): 935–945

    Article  PubMed  CAS  Google Scholar 

  • Han S, Park K, Kim H Y, Lee M S, Kim H J, Kim Y D, Yuh Y J, Kim S R, Suh H S (2000). Clinical implication of altered expression of Mad1 protein in human breast carcinoma. Cancer, 88(7): 1623–1632

    Article  PubMed  CAS  Google Scholar 

  • Hardwick K G, Weiss E, Luca F C, Winey M, Murray A W (1996). Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science, 273(5277): 953–956

    Article  PubMed  CAS  Google Scholar 

  • Hinkle A, Tobacman L S (2003). Folding and function of the troponin tail domain. Effects of cardiomyopathic troponin T mutations. J Biol Chem, 278(1): 506–513

    CAS  Google Scholar 

  • Hoyt M A, Totis L, Roberts B T S (1991). S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell, 66(3): 507–517

    Article  PubMed  CAS  Google Scholar 

  • Hwang L H, Lau L F, Smith D L, Mistrot C A, Hardwick K G, Hwang E S, Amon A, Murray A W (1998). Budding yeast Cdc20: a target of the spindle checkpoint. Science, 279(5353): 1041–1044

    Article  PubMed  CAS  Google Scholar 

  • Jallepalli P V, Lengauer C (2001). Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer, 1(2): 109–117

    Article  PubMed  CAS  Google Scholar 

  • Kim S H, Lin D P, Matsumoto S, Kitazono A, Matsumoto T (1998). Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science, 279(5353): 1045–1047

    Article  PubMed  CAS  Google Scholar 

  • Li R, Murray AW (1991). Feedback control of mitosis in budding yeast. Cell, 66(3): 519–531

    Article  PubMed  CAS  Google Scholar 

  • Lindahl E, Azuara C, Koehl P, Delarue M (2006). NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res, 34(Web Server Web Server issue): W52–6

    Article  PubMed  CAS  Google Scholar 

  • Lopes C S, Sunkel C E (2003). The spindle checkpoint: from normal cell division to tumorigenesis. Arch Med Res, 34(3): 155–165

    Article  PubMed  CAS  Google Scholar 

  • Michael S C, Gary J G (1995). Microinjection of mitotic cells with the 3F3/2 Anti-phosphoepitope antibody delays the onset of anaphase. J Cell Biol, 129(5): 1195–1204

    Article  Google Scholar 

  • Mimori K, Inoue H, Alder H, Ueo H, Tanaka Y, Mori M (2001). Mutation analysis of hBUB1, human mitotic checkpoint gene in multiple carcinomas. Oncol Rep, 8(1): 39–42

    PubMed  CAS  Google Scholar 

  • Ng P C, Henikoff S (2001). Predicting deleterious amino acid substitutions. Genome Res, 11(5): 863–874

    Article  PubMed  CAS  Google Scholar 

  • Ng P C, Henikoff S (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res, 31(13): 3812–3814

    Article  PubMed  CAS  Google Scholar 

  • Nomoto S, Haruki N, Takahashi T, Masuda A, Koshikawa T, Takahashi T, Fujii Y, Osada H, Takahashi T (1999). Search for in vivo somatic mutations in the mitotic checkpoint gene, hMAD1, in human lung cancers. Oncogene, 18(50): 7180–7183

    Article  PubMed  CAS  Google Scholar 

  • Ohshima K, Haraoka S, Yoshioka S, Hamasaki M, Fujiki T, Suzumiya J, Kawasaki C, Kanda M, Kikuchi M (2000). Mutation analysis of mitotic checkpoint genes (hBUB1 and hBUBR1) and microsatellite instability in adult T-cell leukemia/lymphoma. Cancer Lett, 158(2): 141–150

    Article  PubMed  CAS  Google Scholar 

  • Peters J M (2006). The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol, 7(9): 644–656

    Article  PubMed  CAS  Google Scholar 

  • Peters J M (2008). Checkpoint control: the journey continues. Curr Biol, 18(4): R170–R172

    Article  PubMed  CAS  Google Scholar 

  • Rajasekaran R, Priya Doss C G, Sudandiradoss C, Ramanathan K, Sethumadhavan R (2008). In silico analysis of structural and functional consequences in p16INK4A by deleterious nsSNPs associated CDKN2A gene in malignant melanoma. Biochimie, 90(10): 1523–1529

    Article  PubMed  CAS  Google Scholar 

  • Ramensky V, Bork P, Sunyaev S (2002). Human non-synonymous SNPs: server and survey. Nucleic Acids Res, 30(17): 3894–3900

    Article  PubMed  CAS  Google Scholar 

  • Reis R M, Nakamura M, Masuoka J, Watanabe T, Colella S, Yonekawa Y, Kleihues P, Ohgaki H (2001). Mutation analysis of hBUB1, hBUBR1 and hBUB3 genes in glioblastomas. Acta Neuropathol, 101(4): 297–304

    PubMed  CAS  Google Scholar 

  • Sato M, Sekido Y, Horio Y, Takahashi M, Saito H, Minna J D, Shimokata K, Hasegawa Y (2000). Infrequent mutation of the hBUB1 and hBUBR1 genes in human lung cancer. Jpn J Cancer Res, 91(5): 504–509

    Article  PubMed  CAS  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson H J (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res, 33(Web Server issue): W363–7

    Article  PubMed  CAS  Google Scholar 

  • Suhre K, Sanejouand Y H (2004). ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res, 32( Web Server issue): W610–4

    Article  PubMed  CAS  Google Scholar 

  • Tina K G, Bhadra R, Srinivasan N (2007). PIC: Protein Interactions Calculator. Nucleic Acids Res, 35(Web Server issue): W473–W476

    Article  PubMed  CAS  Google Scholar 

  • Tsukasaki K, Miller C W, Greenspun E, Eshaghian S, Kawabata H, Fujimoto T, Tomonaga M, Sawyers C, Said JW, Koeffler H P (2001). Mutations in the mitotic check point gene, MAD1L1, in human cancers. Oncogene, 20(25): 3301–3305

    Article  PubMed  CAS  Google Scholar 

  • Varfolomeev S D, Uporov I V, Fedorov E V (2002). Bioinformatics and molecular modeling in chemical enzymology. Active sites of hydrolases. Biochemistry (Mosc), 67(10): 1099–1108

    CAS  Google Scholar 

  • Wang X, Jin D Y, Ng R W, Feng H, Wong Y C, Cheung A L, Tsao S W (2002). Significance of MAD2 expression to mitotic checkpoint control in ovarian cancer cells. Cancer Res, 62(6): 1662–1668

    PubMed  CAS  Google Scholar 

  • Yip Y L, Famiglietti M, Gos A, Duek P D, David F P, Gateau A, Bairoch A (2008). Annotating single amino acid polymorphisms in the UniProt/Swiss-Prot knowledgebase. Hum Mutat, 29(3): 361–366

    Article  PubMed  CAS  Google Scholar 

  • Yip Y L, Scheib H, Diemand A V, Gattiker A, Famiglietti L M, Gasteiger E, Bairoch A (2004). The Swiss-Prot variant page and the ModSNP database: a resource for sequence and structure information on human protein variants. Hum Mutat, 23(5): 464–470

    Article  PubMed  CAS  Google Scholar 

  • Yu H (2002). Regulation of APC-Cdc20 by the spindle checkpoint. Curr Opin Cell Biol, 14(6): 706–714

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Vasmatzis G, Cornette J L, DeLisi C (1997). Determination of atomic desolvation energies from the structures of crystallized proteins. J Mol Biol, 267(3): 707–726

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rajasekaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopus, M., Sethumadhavan, R., Chandrasekaran, P. et al. A computational approach to explore the functional missense mutations in the spindle check point protein Mad1. Front. Biol. 8, 618–625 (2013). https://doi.org/10.1007/s11515-013-1280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-013-1280-0

Keywords

Navigation