Skip to main content
Log in

Dissection of gene function at clonal level using mosaic analysis with double markers

  • Review
  • Published:
Frontiers in Biology

Abstract

MADM (Mosaic Analysis with Double Markers) technology offers a genetic approach in mice to visualize and concomitantly manipulate genetically defined cells at clonal level and single cell resolution. MADM employs Cre recombinase/loxP-dependent interchromosomal mitotic recombination to reconstitute two split marker genes—green GFP and red tdTomato—and can label sparse clones of homozygous mutant cells in one color and wild-type cells in the other color in an otherwise unlabeled background. At present, major MADM applications include lineage tracing, single cell labeling, conditional knockouts in small populations of cells and induction of uniparental chromosome disomy to assess effects of genomic imprinting. MADM can be applied universally in the mouse with the sole limitation being the specificity of the promoter controlling Cre recombinase expression. Here I review recent developments and extensions of the MADM technique and give an overview of the major discoveries and progresses enabled by the implementation of the novel genetic MADM tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armakolas A, Klar A J (2006). Cell type regulates selective segregation of mouse chromosome 7 DNA strands in mitosis. Science, 311(5764): 1146–1149

    Article  PubMed  CAS  Google Scholar 

  • Ayala R, Shu T, Tsai L H (2007). Trekking across the brain: the journey of neuronal migration. Cell, 128(1): 29–43

    Article  PubMed  CAS  Google Scholar 

  • Badea T C, Wang Y, Nathans J (2003). A noninvasive genetic/pharmacologic strategy for visualizing cell morphology and clonal relationships in the mouse. J Neurosci, 23(6): 2314–2322

    PubMed  CAS  Google Scholar 

  • Barlow D P (2011). Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet, 45(1): 379–403

    Article  PubMed  CAS  Google Scholar 

  • Bartolomei M S, Ferguson-Smith A C (2011). Mammalian genomic imprinting. Cold Spring Harb Perspect Biol, 3(7): 3

    Google Scholar 

  • Bi W, Yan J, Stankiewicz P, Park S S, Walz K, Boerkoel C F, Potocki L, Shaffer L G, Devriendt K, Nowaczyk M J, Inoue K, Lupski J R (2002). Genes in a refined Smith-Magenis syndrome critical deletion interval on chromosome 17p11.2 and the syntenic region of the mouse. Genome Res, 12(5): 713–728

    Article  PubMed  CAS  Google Scholar 

  • Blair S S (2003). Genetic mosaic techniques for studying Drosophila development. Development, 130(21): 5065–5072

    Article  PubMed  CAS  Google Scholar 

  • Bonaguidi MA, Wheeler MA, Shapiro J S, Stadel R P, Sun G J, Ming G L, Song H (2011). In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 145(7): 1142–1155

    Article  PubMed  CAS  Google Scholar 

  • Branda C S, Dymecki S M (2004). Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell, 6(1): 7–28

    Article  PubMed  CAS  Google Scholar 

  • Brennand K, Huangfu D, Melton D (2007). All beta cells contribute equally to islet growth and maintenance. PLoS Biol, 5(7): e163

    Article  PubMed  Google Scholar 

  • Buckingham M E, Meilhac S M (2011). Tracing cells for tracking cell lineage and clonal behavior. Dev Cell, 21(3): 394–409

    Article  PubMed  CAS  Google Scholar 

  • Cajal S R y (1911). Histology of the Nervous System of Man and Vertebrates. Oxford University Press, Inc, Oxford 1995

    Google Scholar 

  • Translation Cepko C, Ryder E F, Austin C P, Walsh C, Fekete D M (1995). Lineage analysis using retrovirus vectors. Methods Enzymol, 254: 387–419

    Article  Google Scholar 

  • Chow B Y, Han X, Boyden E S (2012). Genetically encoded molecular tools for light-driven silencing of targeted neurons. Prog Brain Res, 196: 49–61

    Article  PubMed  CAS  Google Scholar 

  • Cowan W M (1998). The emergence of modern neuroanatomy and developmental neurobiology. Neuron, 20(3): 413–426

    Article  PubMed  CAS  Google Scholar 

  • De Paola V, Arber S, Caroni P (2003). AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nat Neurosci, 6(5): 491–500

    PubMed  Google Scholar 

  • Desgraz R, Herrera P L (2009). Pancreatic neurogenin 3-expressing cells are unipotent islet precursors. Development, 136(21): 3567–3574

    Article  PubMed  CAS  Google Scholar 

  • Dessaud E, Yang L L, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, Novitch B G, Briscoe J (2007). Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature, 450(7170): 717–720

    Article  PubMed  CAS  Google Scholar 

  • Dymecki S M, Kim J C (2007). Molecular neuroanatomy’s “Three Gs”: a primer. Neuron, 54(1): 17–34

    Article  PubMed  CAS  Google Scholar 

  • Espinosa J S, Luo L (2008). Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. J Neurosci, 28: 2301–2312

    Article  PubMed  CAS  Google Scholar 

  • Espinosa J S, Wheeler D G, Tsien R W, Luo L (2009). Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron, 62(2): 205–217

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996). Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA, 93(20): 10887–10890

    Article  PubMed  CAS  Google Scholar 

  • Feinberg A P (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447(7143): 433–440

    Article  PubMed  CAS  Google Scholar 

  • Feng G, Mellor R H, Bernstein M, Keller-Peck C, Nguyen Q T, Wallace M, Nerbonne J M, Lichtman J W, Sanes J R (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron, 28(1): 41–51

    Article  PubMed  CAS  Google Scholar 

  • Foo L C, Allen N J, Bushong E A, Ventura P B, Chung W S, Zhou L, Cahoy J D, Daneman R, Zong H, Ellisman M H, Barres B A (2011). Development of a method for the purification and culture of rodent astrocytes. Neuron, 71(5): 799–811

    Article  PubMed  CAS  Google Scholar 

  • Franco S J, Müller U (2013). Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex. Neuron, 77(1): 19–34

    Article  PubMed  CAS  Google Scholar 

  • Gao P, Sultan K T, Zhang X J, Shi S H (2013). Lineage-dependent circuit assembly in the neocortex. Development, 140(13): 2645–2655

    Article  PubMed  CAS  Google Scholar 

  • Gorski J A, Talley T, Qiu M, Puelles L, Rubenstein J L, Jones K R (2002). Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci, 22: 6309–6314

    PubMed  CAS  Google Scholar 

  • Hallonet M E, Le Douarin N M (1993). Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras. Eur J Neurosci, 5(9): 1145–1155

    Article  PubMed  CAS  Google Scholar 

  • Hayashi S, McMahon A P (2002). Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol, 244(2): 305–318

    Article  PubMed  CAS  Google Scholar 

  • Hegemann P, Möglich A (2011). Channelrhodopsin engineering and exploration of new optogenetic tools. Nat Methods, 8(1): 39–42

    Article  PubMed  CAS  Google Scholar 

  • Hippenmeyer S, Johnson R L, Luo L (2013). Mosaic analysis with double markers reveals cell-type-specific paternal growth dominance. Cell Rep, 3: 960–967

    Article  PubMed  CAS  Google Scholar 

  • Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle D R, Arber S (2005). A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol, 3(5): e159

    Article  PubMed  Google Scholar 

  • Hippenmeyer S, Youn Y H, Moon H M, Miyamichi K, Zong H, Wynshaw-Boris A, Luo L (2010). Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron, 68(4): 695–709

    Article  PubMed  CAS  Google Scholar 

  • Imayoshi I, Ohtsuka T, Metzger D, Chambon P, Kageyama R (2006). Temporal regulation of Cre recombinase activity in neural stem cells. Genesis, 44(5): 233–238

    Article  PubMed  CAS  Google Scholar 

  • Indra A K, Warot X, Brocard J, Bornert J M, Xiao J H, Chambon P, Metzger D (1999). Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res, 27(22): 4324–4327

    Article  PubMed  CAS  Google Scholar 

  • Jefferis G S, Livet J (2012). Sparse and combinatorial neuron labelling. Curr Opin Neurobiol, 22(1): 101–110

    Article  PubMed  CAS  Google Scholar 

  • Lao Z, Raju G P, Bai C B, Joyner A L (2012). MASTR: a technique for mosaic mutant analysis with spatial and temporal control of recombination using conditional floxed alleles in mice. Cell Rep, 2: 386–396

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Luo L (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron, 22(3): 451–461

    Article  PubMed  CAS  Google Scholar 

  • Legué E, Joyner A L (2010). Genetic fate mapping using site-specific recombinases. Methods Enzymol, 477: 153–181

    Article  PubMed  Google Scholar 

  • Lehtinen M K, Walsh C A (2011). Neurogenesis at the braincerebrospinal fluid interface. Annu Rev Cell Dev Biol, 27(1): 653–679

    Article  PubMed  CAS  Google Scholar 

  • Lewandoski M (2001). Conditional control of gene expression in the mouse. Nat Rev Genet, 2(10): 743–755

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Xiao G, Yin H, Hippenmeyer S, Horowitz J M, Ghashghaei H T (2013). Neural development is dependent on the function of specificity protein 2 in cell cycle progression. Development, 140(3): 552–561

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Sage J C, Miller M R, Verhaak R G, Hippenmeyer S, Vogel H, Foreman O, Bronson R T, Nishiyama A, Luo L, Zong H (2011). Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell, 146(2): 209–221

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Jenkins N A, Copeland N G (2002). Efficient Cre-loxP-induced mitotic recombination in mouse embryonic stem cells. Nat Genet, 30(1): 66–72

    Article  PubMed  CAS  Google Scholar 

  • Lui J H, Hansen D V, Kriegstein A R (2011). Development and evolution of the human neocortex. Cell, 146(1): 18–36

    Article  PubMed  CAS  Google Scholar 

  • Luo L (2007). Fly MARCM and mouse MADM: genetic methods of labeling and manipulating single neurons. Brain Res Brain Res Rev, 55(2): 220–227

    Article  CAS  Google Scholar 

  • Mabb A M, Judson M C, Zylka M J, Philpot B D (2011). Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci, 34(6): 293–303

    Article  PubMed  CAS  Google Scholar 

  • Madisen L, Zwingman T A, Sunkin S M, Oh S W, Zariwala H A, Gu H, Ng L L, Palmiter R D, Hawrylycz M J, Jones A R, Lein E S, Zeng H (2010). A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci, 13(1): 133–140

    Article  PubMed  CAS  Google Scholar 

  • Marín O, Valiente M, Ge X, Tsai L H (2010). Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol, 2(2): a001834

    PubMed  Google Scholar 

  • McConnell S K (1988). Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation. J Neurosci, 8: 945–974

    PubMed  CAS  Google Scholar 

  • Merkle F T, Mirzadeh Z, Alvarez-Buylla A (2007). Mosaic organization of neural stem cells in the adult brain. Science, 317(5836): 381–384

    Article  PubMed  CAS  Google Scholar 

  • Metzger D, Chambon P (2001). Site- and time-specific gene targeting in the mouse. Methods, 24(1): 71–80

    Article  PubMed  CAS  Google Scholar 

  • Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687–702

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi G, Hjerling-Leffler J, Karayannis T, Sousa V H, Butt S J, Battiste J, Johnson J E, Machold R P, Fishell G (2010). Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci, 30: 1582–1594

    Article  PubMed  CAS  Google Scholar 

  • Morgan T H (1914). Mosaics and gynandromorphs in Drosophila. Proc Soc Exp Biol Med, 11(6): 171–172

    Article  Google Scholar 

  • Muzumdar M D, Luo L, Zong H (2007). Modeling sporadic loss of heterozygosity in mice by using mosaic analysis with double markers (MADM). Proc Natl Acad Sci USA, 104(11): 4495–4500

    Article  PubMed  CAS  Google Scholar 

  • Nelson S B, Sugino K, Hempel C M (2006). The problem of neuronal cell types: a physiological genomics approach. Trends Neurosci, 29(6): 339–345

    Article  PubMed  CAS  Google Scholar 

  • Nicholls R D, Knepper J L (2001). Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet, 2(1): 153–175

    Article  PubMed  CAS  Google Scholar 

  • Ninkovic J, Gotz M (2013). Fate specification in the adult brain-lessons for eliciting neurogenesis from glial cells. BioEssays, 35: 242–252

    Article  PubMed  CAS  Google Scholar 

  • Novak A, Guo C, Yang W, Nagy A, Lobe C G (2000). Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis, 28(3–4): 147–155

    Article  PubMed  CAS  Google Scholar 

  • Petersen P H, Zou K, Hwang J K, Jan Y N, Zhong W (2002). Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature, 419(6910): 929–934

    Article  PubMed  CAS  Google Scholar 

  • Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns W B, Caskey C T, Ledbetter D H (1993). Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature, 364(6439): 717–721

    Article  PubMed  CAS  Google Scholar 

  • Ross M E, Walsh C A (2001). Human brain malformations and their lessons for neuronal migration. Annu Rev Neurosci, 24(1): 1041–1070

    Article  PubMed  CAS  Google Scholar 

  • Sanes J R (1989). Analysing cell lineage with a recombinant retrovirus. Trends Neurosci, 12(1): 21–28

    Article  PubMed  CAS  Google Scholar 

  • Schnütgen F, Doerflinger N, Calléja C, Wendling O, Chambon P, Ghyselinck N B (2003). A directional strategy for monitoring Cremediated recombination at the cellular level in the mouse. Nat Biotechnol, 21(5): 562–565

    Article  PubMed  Google Scholar 

  • Shaner N C, Campbell R E, Steinbach P A, Giepmans B N, Palmer A E, Tsien R Y (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol, 22(12): 1567–1572

    Article  PubMed  CAS  Google Scholar 

  • Smith G B, Fitzpatrick D (2012). Specifying cortical circuits: a role for cell lineage. Neuron, 75(1): 4–5

    Article  PubMed  CAS  Google Scholar 

  • Soriano P (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet, 21(1): 70–71

    Article  PubMed  CAS  Google Scholar 

  • Stern C (1936). Somatic Crossing over and Segregation in Drosophila Melanogaster. Genetics, 21(6): 625–730

    PubMed  CAS  Google Scholar 

  • Tasic B, Miyamichi K, Hippenmeyer S, Dani V S, Zeng H, Joo W, Zong H, Chen-Tsai Y, Luo L (2012). Extensions of MADM (mosaic analysis with double markers) in mice. PLoS ONE, 7(3): e33332

    Article  PubMed  CAS  Google Scholar 

  • Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban P C, Bock R, Klein R, Schütz G (1999). Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet, 23(1): 99–103

    Article  PubMed  CAS  Google Scholar 

  • Tsai J W, Chen Y, Kriegstein A R, Vallee R B (2005). LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol, 170(6): 935–945

    Article  PubMed  CAS  Google Scholar 

  • Walsh C, Cepko C L (1992). Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science, 255(5043): 434–440

    Article  PubMed  CAS  Google Scholar 

  • Wingate R J, Hatten M E (1999). The role of the rhombic lip in avian cerebellum development. Development, 126(20): 4395–4404

    PubMed  CAS  Google Scholar 

  • Woodruff A, Xu Q, Anderson S A, Yuste R (2009). Depolarizing effect of neocortical chandelier neurons. Front Neural Circuits 3: 15

    PubMed  Google Scholar 

  • Wynshaw-Boris A, Pramparo T, Youn Y H, Hirotsune S (2010). Lissencephaly: mechanistic insights from animal models and potential therapeutic strategies. Semin Cell Dev Biol, 21(8): 823–830

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Tam M, Anderson S A (2008). Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol, 506(1): 16–29

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Rubin GM (1993). Analysis of genetic mosaics in developing and adult Drosophila tissues. Development, 117(4): 1223–1237

    PubMed  CAS  Google Scholar 

  • Yang S B, Mclemore K D, Tasic B, Luo L, Jan Y N, Jan L Y (2012). Kv1.1-dependent control of hippocampal neuron number as revealed by mosaic analysis with double markers. J Physiol, 590(Pt 11): 2645–2658

    PubMed  CAS  Google Scholar 

  • Yingling J, Toyo-Oka K, Wynshaw-Boris A (2003). Miller-Dieker syndrome: analysis of a human contiguous gene syndrome in the mouse. Am J Hum Genet, 73(3): 475–488

    Article  PubMed  CAS  Google Scholar 

  • Yingling J, Youn Y H, Darling D, Toyo-Oka K, Pramparo T, Hirotsune S, Wynshaw-Boris A (2008). Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell, 132(3): 474–486

    Article  PubMed  CAS  Google Scholar 

  • Youn Y H, Pramparo T, Hirotsune S, Wynshaw-Boris A (2009). Distinct dose-dependent cortical neuronal migration and neurite extension defects in Lis1 and Ndel1 mutant mice. J Neurosci, 29: 15520–15530

    Article  PubMed  CAS  Google Scholar 

  • Young P, Qiu L, Wang D, Zhao S, Gross J, Feng G (2008). Singleneuron labeling with inducible Cre-mediated knockout in transgenic mice. Nat Neurosci, 11(6): 721–728

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Aravanis A M, Adamantidis A, de Lecea L, Deisseroth K (2007). Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci, 8(8): 577–581

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Bergles D E, Nishiyama A (2008). NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development, 135(1): 145–157

    Article  PubMed  CAS  Google Scholar 

  • Zhuo L, Theis M, Alvarez-Maya I, Brenner M, Willecke K, Messing A (2001). hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis, 31(2): 85–94

    Article  PubMed  CAS  Google Scholar 

  • Zong H, Espinosa J S, Su H H, Muzumdar M D, Luo L (2005). Mosaic analysis with double markers in mice. Cell, 121(3): 479–492

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Hippenmeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hippenmeyer, S. Dissection of gene function at clonal level using mosaic analysis with double markers. Front. Biol. 8, 557–568 (2013). https://doi.org/10.1007/s11515-013-1279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-013-1279-6

Keywords

Navigation