Skip to main content
Log in

The neural circuit basis of Rett syndrome

  • Review
  • Published:
Frontiers in Biology

Abstract

Rett syndrome is an Autism Spectrum Disorder caused by mutations in the gene encoding methyl-CpG binding protein (MeCP2). Following a period of normal development, patients lose learned communication and motor skills, and develop a number of symptoms including motor disturbances, cognitive impairments and often seizures. In this review, we discuss the role of MeCP2 in regulating synaptic function and how synaptic dysfunctions lead to neuronal network impairments and alterations in sensory information processing. We propose that Rett syndrome is a disorder of neural circuits as a result of non-linear accumulated dysfunction of synapses at the level of individual cell populations across multiple neurotransmitter systems and brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amir R E, Van den Veyver I B, Wan M, Tran C Q, Francke U, Zoghbi H Y (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 23(2): 185–188

    Article  PubMed  CAS  Google Scholar 

  • Armstrong D D (2005). Neuropathology of Rett syndrome. J Child Neurol, 20(9): 747–753

    Article  PubMed  Google Scholar 

  • Asaka Y, Jugloff D G M, Zhang L, Eubanks J H, Fitzsimonds R M (2006). Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol Dis, 21(1): 217–227

    Article  PubMed  CAS  Google Scholar 

  • Bader G G, Witt-Engerström I, Hagberg B (1989). Neurophysiological findings in the Rett syndrome, II: Visual and auditory brainstem, middle and late evoked responses. Brain Dev, 11(2): 110–114

    Article  PubMed  CAS  Google Scholar 

  • Belichenko N P, Belichenko P V, Mobley W C (2009a). Evidence for both neuronal cell autonomous and nonautonomous effects of methyl-CpG-binding protein 2 in the cerebral cortex of female mice with MeCP2 mutation. Neurobiol Dis, 34(1): 71–77

    Article  PubMed  CAS  Google Scholar 

  • Belichenko P V, Wright E E, Belichenko N P, Masliah E, Li H H, Mobley W C, Francke U (2009b). Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks. J Comp Neurol, 514(3): 240–258

    Article  PubMed  CAS  Google Scholar 

  • Calfa G, Hablitz J J, Pozzo-Miller L (2011). Network hyperexcitability in hippocampal slices from MeCP2 mutant mice revealed by voltagesensitive dye imaging. J Neurophysiol, 105(4): 1768–1784

    Article  PubMed  Google Scholar 

  • Chahrour M, Jung S Y, Shaw C, Zhou X, Wong S T C, Qin J, Zoghbi H Y (2008). MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 320(5880): 1224–1229

    Article  PubMed  CAS  Google Scholar 

  • Chahrour M, Zoghbi H Y (2007). The story of Rett syndrome: from clinic to neurobiology. Neuron, 56(3): 422–437

    Article  PubMed  CAS  Google Scholar 

  • Chao H T, Chen H, Samaco R C, Xue M, Chahrour M, Yoo J, Neul J L, Gong S, Lu H C, Heintz N, Ekker M, Rubenstein J L, Noebels J L, Rosenmund C, Zoghbi H Y (2010). Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature, 468(7321): 263–269

    Article  PubMed  CAS  Google Scholar 

  • Chao H T, Zoghbi H Y, Rosenmund C (2007). MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron, 56(1): 58–65

    Article  PubMed  CAS  Google Scholar 

  • Chen R Z, Akbarian S, Tudor M, Jaenisch R (2001). Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet, 27(3): 327–331

    Article  PubMed  CAS  Google Scholar 

  • Chen W G, Chang Q, Lin Y, Meissner A, West A E, Griffith E C, Jaenisch R, Greenberg M E (2003). Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science, 302(5646): 885–889

    Article  PubMed  CAS  Google Scholar 

  • Cheval H, Guy J, Merusi C, De Sousa D, Selfridge J, Bird A (2012). Postnatal inactivation reveals enhanced requirement for MeCP2 at distinct age windows. Hum Mol Genet, 21(17): 3806–3814

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Gabel HW, Hemberg M, Hutchinson A N, Sadacca L A, Ebert D H, Harmin D A, Greenberg R S, Verdine V K, Zhou Z, Wetsel W C, West A E, Greenberg M E (2011). Genome-wide activitydependent MeCP2 phosphorylation regulates nervous system development and function. Neuron, 72(1): 72–85

    Article  PubMed  CAS  Google Scholar 

  • Collins A L, Levenson J M, Vilaythong A P, Richman R, Armstrong D L, Noebels J L, David Sweatt J, Zoghbi H Y (2004). Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet, 13(21): 2679–2689

    Article  PubMed  CAS  Google Scholar 

  • Cull-Candy S, Brickley S, Farrant M (2001). NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol, 11(3): 327–335

    Article  PubMed  CAS  Google Scholar 

  • D’Cruz J A, Wu C, Zahid T, El-Hayek Y, Zhang L, Eubanks J H (2010). Alterations of cortical and hippocampal EEG activity in MeCP2-deficient mice. Neurobiol Dis, 38(1): 8–16

    Article  PubMed  CAS  Google Scholar 

  • Dani V S, Chang Q, Maffei A, Turrigiano G G, Jaenisch R, Nelson S B (2005). Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci USA, 102(35): 12560–12565

    Article  PubMed  CAS  Google Scholar 

  • Dani V S, Nelson S B (2009). Intact long-term potentiation but reduced connectivity between neocortical layer 5 pyramidal neurons in a mouse model of Rett syndrome. J Neurosci, 29(36): 11263–11270

    Article  PubMed  CAS  Google Scholar 

  • Derecki N C, Cronk J C, Lu Z, Xu E, Abbott S B G, Guyenet P G, Kipnis J (2012). Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 484(7392): 105–109

    Article  PubMed  CAS  Google Scholar 

  • Fyffe S L, Neul J L, Samaco R C, Chao H T, Ben-Shachar S, Moretti P, McGill B E, Goulding E H, Sullivan E, Tecott L H, Zoghbi H Y (2008). Deletion of MeCP2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron, 59(6): 947–958

    Article  PubMed  CAS  Google Scholar 

  • Gandal M J, Edgar J C, Klook K, Siegel S J (2011). Gamma synchrony: Towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology, 62(3): 1504–1518

    Article  PubMed  CAS  Google Scholar 

  • Gantz S C, Ford C P, Neve K A, Williams J T (2011). Loss of MeCP2 in substantia nigra dopamine neurons compromises the nigrostriatal pathway. J Neurosci, 31(35): 12629–12637

    Article  PubMed  CAS  Google Scholar 

  • Gemelli T, Berton O, Nelson E D, Perrotti L I, Jaenisch R, Monteggia L M (2006). Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry, 59(5): 468–476

    Article  PubMed  CAS  Google Scholar 

  • Goffin D, Allen M, Zhang L, Amorim M, Wang I T J, Reyes A R S, Mercado-Berton A, Ong C, Cohen S, Hu L, Blendy J A, Carlson G C, Siegel S J, Greenberg M E, Zhou Z (2012). Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses. Nat Neurosci, 15(2): 274–283

    Article  CAS  Google Scholar 

  • Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007). Reversal of neurological defects in a mouse model of Rett syndrome. Science, 315(5815): 1143–1147

    Article  PubMed  Google Scholar 

  • Guy J, Hendrich B, Holmes M, Martin J E, Bird A (2001). A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet, 27(3): 322–326

    Article  PubMed  CAS  Google Scholar 

  • Jian L, Nagarajan L, de Klerk N, Ravine D, Bower C, Anderson A, Williamson S, Christodoulou J, Leonard H (2006). Predictors of seizure onset in Rett syndrome. J Pediatr, 149(4): 542–547

    Article  PubMed  Google Scholar 

  • Jones P L, Veenstra G J, Wade P A, Vermaak D, Kass S U, Landsberger N, Strouboulis J, Wolffe A P (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet, 19(2): 187–191

    Article  PubMed  CAS  Google Scholar 

  • Kishi N, Macklis J D (2004). MECP2 is progressively expressed in postmigratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci, 27(3): 306–321

    Article  PubMed  CAS  Google Scholar 

  • Lewis J D, Meehan R R, Henzel W J, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992). Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell, 69(6): 905–914

    Article  PubMed  CAS  Google Scholar 

  • Lioy D T, Garg S K, Monaghan C E, Raber J, Foust K D, Kaspar B K, Hirrlinger P G, Kirchhoff F, Bissonnette J M, Ballas N, Mandel G (2011). A role for glia in the progression of Rett’s syndrome. Nature, 475(7357): 497–500

    Article  PubMed  CAS  Google Scholar 

  • Lonetti G, Angelucci A, Morando L, Boggio E M, Giustetto M, Pizzorusso T (2010). Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Biol Psychiatry, 67(7): 657–665

    Article  PubMed  Google Scholar 

  • Marchetto M C N, Carromeu C, Acab A, Yu D, Yeo G W, Mu Y, Chen G, Gage F H, Muotri A R (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143(4): 527–539

    Article  PubMed  CAS  Google Scholar 

  • McGraw C M, Samaco R C, Zoghbi H Y (2011). Adult neural function requires MeCP2. Science, 333(6039): 186

    Article  PubMed  CAS  Google Scholar 

  • Medrihan L, Tantalaki E, Aramuni G, Sargsyan V, Dudanova I, Missler M, Zhang W (2008). Early defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome. J Neurophysiol, 99(1): 112–121

    Article  PubMed  CAS  Google Scholar 

  • Moretti P, Levenson JM, Battaglia F, Atkinson R, Teague R, Antalffy B, Armstrong D, Arancio O, Sweatt J D, Zoghbi H Y (2006). Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci, 26(1): 319–327

    Article  PubMed  CAS  Google Scholar 

  • Na E S, Nelson E D, Adachi M, Autry A E, Mahgoub MA, Kavalali E T, Monteggia L M (2012). A mouse model for MeCP2 duplication syndrome: MeCP2 overexpression impairs learning and memory and synaptic transmission. J Neurosci, 32(9): 3109–3117

    Article  PubMed  CAS  Google Scholar 

  • Nan X, Campoy F J, Bird A (1997). MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell, 88(4): 471–481

    Article  PubMed  CAS  Google Scholar 

  • Nan X, Ng H H, Johnson C A, Laherty C D, Turner BM, Eisenman R N, Bird A (1998). Transcriptional repression by the methyl-CpGbinding protein MeCP2 involves a histone deacetylase complex. Nature, 393(6683): 386–389

    Article  PubMed  CAS  Google Scholar 

  • Neul J L, Kaufmann WE, Glaze D G, Christodoulou J, Clarke A J, Bahi-Buisson N, Leonard H, Bailey M E S, Schanen N C, Zappella M, Renieri A, Huppke P, Percy A K, and the RettSearch Consortium (2010). Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol, 68(6): 944–950

    Article  PubMed  Google Scholar 

  • Noutel J, Hong Y K, Leu B, Kang E, Chen C (2011). Experiencedependent retinogeniculate synapse remodeling is abnormal in MeCP2-deficient mice. Neuron, 70(1): 35–42

    Article  PubMed  CAS  Google Scholar 

  • Qiu Z, Sylwestrak E L, Lieberman D N, Zhang Y, Liu X Y, Ghosh A (2012). The Rett syndrome protein MeCP2 regulates synaptic scaling. J Neurosci, 32(3): 989–994

    Article  PubMed  CAS  Google Scholar 

  • Samaco R C, Mandel-Brehm C, Chao H T, Ward C S, Fyffe-Maricich S L, Ren J, Hyland K, Thaller C, Maricich S M, Humphreys P, Greer J J, Percy A, Glaze D G, Zoghbi H Y, Neul J L (2009). Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proc Natl Acad Sci USA, 106(51): 21966–21971

    Article  PubMed  Google Scholar 

  • Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, Armstrong D, Paylor R, Zoghbi H (2002). Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 35(2): 243–254

    Article  PubMed  CAS  Google Scholar 

  • Skene P J, Illingworth R S, Webb S, Kerr A R W, James K D, Turner D J, Andrews R, Bird A P (2010). Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell, 37(4): 457–468

    Article  PubMed  CAS  Google Scholar 

  • Stauder J E A, Smeets E E J, van Mil S G M, Curfs L G M (2006). The development of visual- and auditory processing in Rett syndrome: an ERP study. Brain Dev, 28(8): 487–494

    Article  PubMed  Google Scholar 

  • Szulwach K E, Li X, Smrt R D, Li Y, Luo Y, Lin L, Santistevan N J, Li W, Zhao X, Jin P (2010). Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol, 189(1): 127–141

    Article  PubMed  CAS  Google Scholar 

  • Taneja P, Ogier M, Brooks-Harris G, Schmid D A, Katz D M, Nelson S B (2009). Pathophysiology of locus ceruleus neurons in a mouse model of Rett syndrome. J Neurosci, 29(39): 12187–12195

    Article  PubMed  CAS  Google Scholar 

  • Tropea D, Giacometti E, Wilson N R, Beard C, McCurry C, Fu D D, Flannery R, Jaenisch R, Sur M (2009). Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA, 106(6): 2029–2034

    Article  PubMed  CAS  Google Scholar 

  • Uhlhaas P J, Singer W (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci, 11(2): 100–113

    Article  PubMed  CAS  Google Scholar 

  • van Zundert B, Yoshii A, Constantine-Paton M (2004). Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci, 27(7): 428–437

    Article  PubMed  Google Scholar 

  • Ward C S, Arvide EM, Huang TW, Yoo J, Noebels J L, Neul J L (2011). MeCP2 is critical within HoxB1-derived tissues of mice for normal lifespan. J Neurosci, 31(28): 10359–10370

    Article  PubMed  CAS  Google Scholar 

  • Weng S M, McLeod F, Bailey M E S, Cobb S R (2011). Synaptic plasticity deficits in an experimental model of Rett syndrome: long-term potentiation saturation and its pharmacological reversal. Neuroscience, 180: 314–321

    Article  PubMed  CAS  Google Scholar 

  • Wood L, Gray N W, Zhou Z, Greenberg M E, Shepherd G M G (2009). Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in an RNA interference model of methyl-CpG-binding protein 2 deficiency. J Neurosci, 29(40): 12440–12448

    Article  PubMed  CAS  Google Scholar 

  • Wood L, Shepherd G M G (2010). Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in a mutant mouse model of Rett syndrome. Neurobiol Dis, 38(2): 281–287

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Tao J, Chen P J, Shahab A, Ge W, Hart R P, Ruan X, Ruan Y, Sun Y E (2010). Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc Natl Acad Sci USA, 107(42): 18161–18166

    Article  PubMed  Google Scholar 

  • Young J I, Hong E P, Castle J C, Crespo-Barreto J, Bowman A B, Rose M F, Kang D, Richman R, Johnson J M, Berget S, Zoghbi H Y (2005). Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci USA, 102(49): 17551–17558

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z W, Zak J D, Liu H (2010). MeCP2 is required for normal development of GABAergic circuits in the thalamus. J Neurophysiol, 103(5): 2470–2481

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Hong E J, Cohen S, Zhao W N, Ho H Y H, Schmidt L, Chen W G, Lin Y, Savner E, Griffith E C, Hu L, Steen J A, Weitz C J, Greenberg M E (2006). Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron, 52(2): 255–269

    Article  PubMed  CAS  Google Scholar 

  • Zoghbi H Y (2003). Postnatal neurodevelopmental disorders: meeting at the synapse? Science, 302(5646): 826–830

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Darren Goffin or Zhaolan (Joe) Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goffin, D., Zhou, Z.(. The neural circuit basis of Rett syndrome. Front. Biol. 7, 428–435 (2012). https://doi.org/10.1007/s11515-012-1248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-012-1248-5

Keywords

Navigation