Skip to main content
Log in

Gene deletor: a new tool to address gene flow and food safety concerns over transgenic crop plants

  • Review
  • Published:
Frontiers in Biology

Abstract

Environmental and food safety concerns over transgenic plants have hampered commercial applications of transgenic plant technology worldwide. A recently developed transgene deletion technology, named gene deletor technology, may be used to eliminate all transgenes from pollen, seeds, fruits or other organs when functions of transgenes are no longer needed or their presence may cause concerns. In this review, I will briefly describe the principle of the gene deletor technology with major supporting experimental data. I will also explain main characteristics and requirements of the gene deletor technology. Finally, I will discuss the gene deletor technology in the context of how it may be used to alleviate environmental and food safety concerns over transgenic plants in vegetatively and sexually propagated plants, to prevent volunteer transgenic plants, to protect proprietary transgenic technologies, and to allow farmers to reuse their harvested seeds for future planting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayley C C, Morgan M, Dale E C, Ow D W (1992). Exchange of gene activity in transgenic plants catalyzed by the Cre-lox site-specific recombination system. Plant Mol Biol, 18(2): 353–361

    Article  PubMed  CAS  Google Scholar 

  • Belostotsky D A, Meagher R B (1996). A pollen-, ovule-, and early embryo-specific poly(A) binding protein from Arabidopsis complements essential functions in yeast. Plant Cell, 8(8): 1261–1275

    PubMed  CAS  Google Scholar 

  • Chen L J, Lee D S, Song Z P, Suh H S, Lu B R (2004). Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann Bot (Lond), 93(1): 67–73

    Article  CAS  Google Scholar 

  • Chen Y, Rice P A (2003). New insight into site-specific recombination from Flp recombinase-DNA structures. Annu Rev Biophys Biomol Struct, 32(1): 135–159

    Article  PubMed  CAS  Google Scholar 

  • Clark D, Klee H, Dandekar A (2004). Despite benefits, commercialization of transgenic horticultural crops lags. Calif Agric, 58(2): 89–98

    Article  Google Scholar 

  • Conner A J, Glare T R, Nap J P (2003). The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J, 33(1): 19–46

    Article  PubMed  Google Scholar 

  • Corneille S, Lutz K, Svab Z, Maliga P (2001). Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J, 27(2): 171–178

    Article  PubMed  CAS  Google Scholar 

  • Dale E C, Ow DW(1991). Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA, 88(23): 10558–10562

    Article  PubMed  CAS  Google Scholar 

  • Dale P J, Clarke B, Fontes EMG (2002). Potential for the environmental impact of transgenic crops. Nat Biotechnol, 20(6): 567–574

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Kumar S, Dufourmantel N (2005a). Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol, 23(5): 238–245

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Ruiz O N, Dhingra A (2005b). Chloroplast genetic engineering to improve agronomic traits. Methods Mol Biol, 286: 111–138

    PubMed  CAS  Google Scholar 

  • Gardner D S, Danneberger T K, Nelson E K (2004). Lateral spread of glyphosate-resistant transgenic creeping bentgrass (Agrostis stolonifera) lines in established turfgrass swards. Weed Technol, 18(3): 773–778

    Article  Google Scholar 

  • Gilbertson L (2003). Cre-lox recombination: Cre-ative tools for plant biotechnology. Trends Biotechnol, 21(12): 550–555

    Article  PubMed  CAS  Google Scholar 

  • Giovannetti M (2003). The ecological risks of transgenic plants. Riv Biol, 96(2): 207–223

    PubMed  Google Scholar 

  • Grindley N D, Whiteson K L, Rice P A (2006). Mechanisms of site-specific recombination. Annu Rev Biochem, 75(1): 567–605

    Article  PubMed  CAS  Google Scholar 

  • Hare P D, Chua N H (2002). Excision of selectable marker genes from transgenic plants. Nat Biotechnol, 20(6): 575–580

    Article  PubMed  CAS  Google Scholar 

  • Heuberger S, Ellers-Kirk C, Tabashnik B E, Carrière Y (2010). Pollen-and seed-mediated transgene flow in commercial cotton seed production fields. PLoS ONE, 5(11): e14128

    Article  PubMed  CAS  Google Scholar 

  • Hoa T T C, Bong B B, Huq E, Hodges T K (2002). Cre/ lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet, 104(4): 518–525

    Article  PubMed  CAS  Google Scholar 

  • Hoff T, Schnorr K M, Mundy J (2001). A recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol Biol, 45(1): 41–49

    Article  PubMed  CAS  Google Scholar 

  • Iamtham S, Day A (2000). Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol, 18(11): 1172–1176

    Article  PubMed  CAS  Google Scholar 

  • Jones P B C (2005). Approval for genetically engineered bentgrass creeps through agency turfs. ISB News Report, http://isb.vt.edu/articles/jan0504.htm

  • Justman M (2008). Enginerrin Agriculture (The 10th briefs on the top areas for technology innovation through 2025). (http://www.socialtechnologies.com/FileView.aspx?fileName=PressRelease03102008.pdf)

  • Kausch A, Hague J, Oliver M, Li Y, Daniell H, Mascia P, Watrud L, Stewart C N Jr (2010). Transgenic biofuel feedstocks and strategies for biocontainment. Biofuels, 1(1): 163–176

    Article  CAS  Google Scholar 

  • Klaus S M J, Huang F C, Golds T J, Koop H U (2004). Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat Biotechnol, 22(2): 225–229

    Article  PubMed  CAS  Google Scholar 

  • König A (2003). A framework for designing transgenic crops—science, safety and citizen’s concerns. Nat Biotechnol, 21(11): 1274–1279

    Article  PubMed  Google Scholar 

  • Lauth M, Spreafico F, Dethleffsen K, Meyer M (2002). Stable and efficient cassette exchange under non-selectable conditions by combined use of two site-specific recombinases. Nucleic Acids Res, 30(21): 115e

    Article  Google Scholar 

  • Li R, Jia X, Mao X (2005). Ethanol-inducible gene expression system and its applications in plant functional genomics. Plant Sci, 169(3): 463–469

    Article  CAS  Google Scholar 

  • Li Y, Duan H, Smith W (2007). Gene-deletor: a new tool to address concerns over GE crops. USDA Information Systems for Biotechnology News Report, June

  • Luo H, Lyznik L A, Gidoni D, Hodges T K (2000). FLP-mediated recombination for use in hybrid plant production. Plant J, 23(3): 423–430

    Article  PubMed  CAS  Google Scholar 

  • Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart C N Jr, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007). ’GM-genedeletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J, 5(2): 263–274

    Article  PubMed  CAS  Google Scholar 

  • Lyznik L A, Gordon-Kamm W J, Tao Y (2003). Site-specific recombination for genetic engineering in plants. Plant Cell Rep, 21(10): 925–932

    Article  PubMed  CAS  Google Scholar 

  • Magaña-Gómez J A, de la Barca A M (2009). Risk assessment of genetically modified crops for nutrition and health. Nutr Rev, 67(1): 1–16

    Article  PubMed  Google Scholar 

  • Mallet J, Porter P (1992). Preventing insect adaptation to insect-resistant crops: Are seed mixtures or refugia the best strategy? Proceedings B is the Royal Society B, 250, 165–169

    Article  Google Scholar 

  • Mehendale H M (2004). Genetically modified foods get bad rap. Int J Toxicol, 23(2): 79–80

    Article  PubMed  Google Scholar 

  • Messeguer J (2003). Gene flow assessment in transgenic plants. Plant Cell Tissue Organ Cult, 73(3): 201–212

    Article  CAS  Google Scholar 

  • Mlynárová L, Conner A J, Nap J P (2006). Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnol J, 4(4): 445–452

    Article  PubMed  Google Scholar 

  • Moon H S, Li Y, Stewart C N Jr (2010). Keeping the genie in the bottle: transgene biocontainment by excision in pollen. Trends Biotechnol, 28(1): 3–8

    Article  PubMed  CAS  Google Scholar 

  • Muller B (2006). Infringing and trespassing plants. Patented seeds at dispute in Canada’s courts. Focal European Journal of Anthropology, 48: 83–98

    Google Scholar 

  • Nern A Pfeiffer, B.D. Svoboda, K. & Rubin, G.M. (2011) Multiple new site-specific recombinases for use in manipulating animal genomes. Proceedings of the National Academy of Sciences, USA, 108, 14198–14203.

    Article  CAS  Google Scholar 

  • Odell J, Caimi P, Sauer B, Russell S (1990). Site-directed recombination in the genome of transgenic tobacco. Mol Gen Genet, 223(3): 369–378

    Article  PubMed  CAS  Google Scholar 

  • Oliver M J, Quisenberry J E, Trolinder N L G, Keim D L (1998). US United States Patent Number 5723765: Control of Plant Gene Expression

  • Ow D W (2001). The right chemistry for marker gene removal? Nat Biotechnol, 19(2): 115–116

    Article  PubMed  CAS  Google Scholar 

  • Ow D W (2002). Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol, 48(1‐2): 183–200

    Article  PubMed  CAS  Google Scholar 

  • Ow D W (2007). GM maize from site-specific recombination technology, what next? Curr Opin Biotechnol, 18(2): 115–120

    Article  PubMed  CAS  Google Scholar 

  • Ow D W (2011). Recombinase-mediated gene stacking as a transformation operating system. J Integr Plant Biol, 53(7): 512–519

    Article  PubMed  CAS  Google Scholar 

  • Redenbaugh K, McHughen A (2004). Regulatory challenges reduce opportunities for horticultural biotechnology. Calif Agric, 58(2): 106–115

    Article  Google Scholar 

  • Reichman J R, Watrud L S, Lee E H, Burdick C A, Bollman M A, Storm MJ, King G A, Mallory-Smith C (2006). Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats. Mol Ecol, 15(13): 4243–4255

    Article  PubMed  CAS  Google Scholar 

  • Rieger M A, Lamond M, Preston C, Powles S B, Roush R T (2002). Pollen-mediated movement of herbicide resistance between commercial canola fields. Science, 296(5577): 2386–2388

    Article  PubMed  CAS  Google Scholar 

  • Russell S H, Hoopes J L, Odell J T (1992). Directed excision of a transgene from the plant genome. Mol Gen Genet, 234(1): 49–59

    PubMed  CAS  Google Scholar 

  • Senaratna T (1992). Artificial seeds. Biotechnol Adv, 10(3): 379–392

    Article  PubMed  CAS  Google Scholar 

  • Shand H (2002). Terminator no solution to gene flow. Nat Biotechnol, 20(8): 775–776

    Article  PubMed  CAS  Google Scholar 

  • Srivastava V, Gidoni D (2010). Site-specific gene integration technologies for crop improvement. In Vitro Cell Dev Biol Plant, 46(3): 219–232

    Article  CAS  Google Scholar 

  • Srivastava V, Ow D W (2003). Rare instances of Cre-mediated deletion product maintained in transgenic wheat. Plant Mol Biol, 52(3): 661–668

    Article  PubMed  CAS  Google Scholar 

  • Stewart C N Jr, Halfhill M D, Warwick S I (2003). Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet, 4(10): 806–817

    Article  PubMed  CAS  Google Scholar 

  • Sugita K, Kasahara T, Matsunaga E, Ebinuma H (2000). A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J, 22(5): 461–469

    Article  PubMed  CAS  Google Scholar 

  • van Duyne G D (2001). A structural view of cre-loxp site-specific recombination. Annu Rev Biophys Biomol Struct, 30(1): 87–104

    Article  PubMed  Google Scholar 

  • Watrud L S, Lee E H, Fairbrother A, Burdick C, Reichman J R, Bollman M, Storm M, King G, van de Water P K (2004). Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proceedings of the National Academy of Sciences USA, 101, 14533–14538

    Article  CAS  Google Scholar 

  • Zuo J, Niu QW, Møller S G, Chua N H (2001). Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol, 19(2): 157–161

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y. Gene deletor: a new tool to address gene flow and food safety concerns over transgenic crop plants. Front. Biol. 7, 557–565 (2012). https://doi.org/10.1007/s11515-012-1195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-012-1195-1

Keywords

Navigation