Skip to main content
Log in

The super super-healing MRL mouse strain

  • Review
  • Published:
Frontiers in Biology

Abstract

The Murphy Roths Large (MRL/MpJ) mice provide unique insights into wound repair and regeneration. These mice and the closely related MRL/MpJ-Fas lpr/J and Large strains heal wounds made in multiple tissues without production of a fibrotic scar. The precise mechanism of this remarkable ability still eludes researchers, but some data has been generated and insights are being revealed. For example, MRL cells reepithelialize over dermal wound sites faster than cells of other mouse strains. This allows a blastema to develop beneath the protective layer. The MRL mice also have an altered basal immune system and an altered immune response to injury. In addition, MRL mice have differences in their tissue resident progenitor cells and certain cell cycle regulatory proteins. The difficulty often lies in separating the causative differences from the corollary differences. Remarkably, not every tissue in these mice heals scarlessly, and the specific type of wound and priming affect regeneration ability as well. The MRL/MpJ, MRL/MpJ-Fas lpr/J, and Large mouse strains are also being investigated for their autoimmune characteristic. Whether the two phenotypes of regeneration and autoimmunity are related remains an enigma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullah I, Lepore J J, Epstein J A, Parmacek M S, Gruber P J (2005). MRL mice fail to heal the heart in response to ischemia-reperfusion injury. Wound Repair and Regeneration, 13: 205–208

    Article  PubMed  Google Scholar 

  • Adachi M, Watanabe-Fukunaga R, Nagata S (1993). Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc Natl Acad Sci USA, 90(5): 1756–1760

    Article  PubMed  CAS  Google Scholar 

  • Alexakis C, Partridge T, Bou-Gharios G (2007). Implication of the satellite cell in dystrophic muscle fibrosis: a self-perpetuating mechanism of collagen overproduction. Am J Physiol Cell Physiol, 293(2): C661–C669

    Article  PubMed  CAS  Google Scholar 

  • Alleva D G, Kaser S B, Beller D I (1997). Aberrant cytokine expression and autocrine regulation characterize macrophages from young MRL+/+ and NZB/W F1 lupus-prone mice. J Immunol, 159: 5610–5619

    PubMed  CAS  Google Scholar 

  • Anversa P, Rota M, Urbanek K, Hosoda T, Sonnenblick E H, Leri A, Kajstura J, Bolli R (2005). Myocardial aging-a stem cell problem. Basic Res Cardiol, 100(6): 482–493

    Article  PubMed  CAS  Google Scholar 

  • Arthur L M, Demarest R M, Clark L, Gourevitch D, Bedelbaeva K, Anderson R, Snyder A, Capobianco A J, Lieberman P, Feigenbaum L, Heber-Katz E (2010). Epimorphic regeneration in mice is p53-independent. Cell Cycle, 9(18): 3667–3673

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft G S, Yang X, Glick A B, Weinstein M, Letterio J L, Mizel D E, Anzano M, Greenwell-Wild T, Wahl S M, Deng C (1999). Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol, 1(5): 260–266

    Article  PubMed  CAS  Google Scholar 

  • Baker K L, Daniels S B, Lennington J B, Lardaro T, Czap A, Notti R Q, Cooper O, Isacson O, Frasca S Jr, Conover J C (2006). Neuroblast protuberances in the subventricular zone of the regenerative MRL/ MpJ mouse. J Comp Neurol, 498(6): 747–761

    Article  PubMed  Google Scholar 

  • Balomenos D, Martin-Caballero J, Garcia M I, Prieto I, Flores J M, Serrano M, Martinez A C (2000). The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nat Med, 6(2): 171–176

    Article  PubMed  CAS  Google Scholar 

  • Balu D T, Hodes G E, Anderson B T, Lucki I (2009). Enhanced sensitivity of the MRL/MpJ mouse to the neuroplastic and behavioral effects of chronic antidepressant treatments. Neuropsychopharmacology, 34(7): 1764–1773

    Article  PubMed  CAS  Google Scholar 

  • Beare A H, Metcalfe A D, Ferguson M W (2006). Location of injury influences the mechanisms of both regeneration and repair within the MRL/MpJ mouse. J Anat, 209(4): 547–559

    Article  PubMed  Google Scholar 

  • Bedelbaeva K, Gourevitch D, Clark L, Chen P, Leferovich J M, Heber-Katz E (2004). The MRL mouse heart healing response shows donor dominance in allogeneic fetal liver chimeric mice. Cloning Stem Cells, 6(4): 352–363

    Article  PubMed  CAS  Google Scholar 

  • Bedelbaeva K, Snyder A, Gourevitch D, Clark L, Zhang X M, Leferovich J, Cheverud J M, Lieberman P, Heber-Katz E (2010). Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Natl Acad Sci USA, 107(13): 5845–5850

    Article  PubMed  CAS  Google Scholar 

  • Blankenhorn E P, Bryan G, Kossenkov A V, Clark L D, Zhang X M, Chang C, Horng W, Pletscher L S, Cheverud JM, Showe L C (2009). Genetic loci that regulate healing and regeneration in LG/J and SM/J mice. Mammalian Genome, 20: 720–733

    Article  PubMed  CAS  Google Scholar 

  • Blankenhorn E P, Troutman S, Clark L D, Zhang X M, Chen P, Heber-Katz E (2003). Sexually dimorphic genes regulate healing and regeneration in MRL mice. Mamm Genome, 14(4): 250–260

    Article  PubMed  Google Scholar 

  • Buckley G, Metcalfe A D, Ferguson M W (2011). Peripheral nerve regeneration in the MRL/MpJ ear wound model. J Anat, 218(2): 163–172

    Article  PubMed  Google Scholar 

  • Bulfield G, Siller W G, Wight P A, Moore K J (1984). X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA, 81(4): 1189–1192

    Article  PubMed  CAS  Google Scholar 

  • Chadwick R B, Bu L, Yu H, Hu Y, Wergedal J E, Mohan S, Baylink D J (2007). Digit tip regrowth and differential gene expression in MRL/ Mpj, DBA/2, and C57BL/6 mice. Wound Repair and Regeneration, 15: 275–284

    Article  PubMed  Google Scholar 

  • Chaudhuri T, Rehfeldt F, Sweeney H L, Discher D E (2010). Preparation of collagen-coated gels that maximize in vitro myogenesis of stem cells by matching the lateral elasticity of in vivo muscle. Methods Mol Biol, 621: 185–202

    Article  PubMed  CAS  Google Scholar 

  • Cimini M, Fazel S, Fujii H, Zhou S, Tang G, Weisel R D, Li R K (2008). The MRL mouse heart does not recover ventricular function after a myocardial infarction. Cardiovascular pathology: the official journal of the Society for Cardiovascular Pathology 17, 32–39

    CAS  Google Scholar 

  • Clark L D, Clark R K, Heber-Katz E (1998). A new murine model for mammalian wound repair and regeneration. Clin Immunol Immunopathol, 88(1): 35–45

    Article  PubMed  CAS  Google Scholar 

  • Colwell A S, Krummel T M, Kong W, Longaker M T, Lorenz H P (2006). Skin wounds in the MRL/MPJ mouse heal with scar. Wound Repair and Regeneration, 14: 81–90

    Article  PubMed  Google Scholar 

  • Cowin A J, Brosnan M P, Holmes T M, Ferguson M W (1998). Endogenous inflammatory response to dermal wound healing in the fetal and adult mouse. Developmental Dynamics, 212: 385–393

    Article  PubMed  CAS  Google Scholar 

  • Cullen MJ, Jaros E (1988). Ultrastructure of the skeletal muscle in the X chromosome-linked dystrophic (mdx) mouse. Comparison with Duchenne muscular dystrophy. Acta Neuropathol, 77(1): 69–81

    Article  PubMed  CAS  Google Scholar 

  • Darby I A, Bisucci T, Pittet B, Garbin S, Gabbiani G, Desmouliere A (2002). Skin flap-induced regression of granulation tissue correlates with reduced growth factor and increased metalloproteinase expression. J Pathol, 197: 117–127

    Article  PubMed  CAS  Google Scholar 

  • Davis T A, Amare M, Naik S, Kovalchuk A L, Tadaki D (2007). Differential cutaneous wound healing in thermally injured MRL/MPJ mice. Wound Repair and Regeneration, 15: 577–588

    Article  PubMed  Google Scholar 

  • Davis T A, Longcor J D, Hicok K C, Lennon G G (2005). Prior injury accelerates subsequent wound closure in a mouse model of regeneration. Cell Tissue Res, 320(3): 417–426

    Article  PubMed  Google Scholar 

  • Desmouliere A, Chaponnier C, Gabbiani G (2005). Tissue repair, contraction, and the myofibroblast. Wound Repair and Regeneration, 13: 7–12

    Article  PubMed  Google Scholar 

  • Donnelly R P, Levine J, Hartwell D Q, Frendl G, Fenton M J, Beller D I (1990). Aberrant regulation of IL-1 expression in macrophages from young autoimmune-prone mice. J Immunol, 145: 3231–3239

    PubMed  CAS  Google Scholar 

  • Fawcett J W, Asher R A (1999). The glial scar and central nervous system repair. Brain Res Bull, 49(6): 377–391

    Article  PubMed  CAS  Google Scholar 

  • Ferguson M W, O’Kane S (2004). Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci, 359(1445): 839–850

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald J, Rich C, Burkhardt D, Allen J, Herzka A S, Little C B (2008). Evidence for articular cartilage regeneration in MRL/MpJ mice. Osteoarthritis and cartilage / OARS. Osteoarthritis Research Society, 16(11): 1319–1326

    Article  CAS  Google Scholar 

  • Gawronska-Kozak B (2004). Regeneration in the ears of immunodeficient mice: identification and lineage analysis of mesenchymal stem cells. Tissue Eng, 10: 1251–1265

    PubMed  CAS  Google Scholar 

  • Goss R J (1980). Prospects of regeneration in man. Clin Orthop Relat Res: 270–282

  • Gourevitch D, Clark L, Chen P, Seitz A, Samulewicz S J, Heber-Katz E (2003). Matrix metalloproteinase activity correlates with blastema formation in the regenerating MRL mouse ear hole model. Developmental Dynamics, 226: 377–387

    Article  PubMed  CAS  Google Scholar 

  • Gourevitch D L, Clark L, Bedelbaeva K, Leferovich J, Heber-Katz E (2009). Dynamic changes after murine digit amputation: the MRL mouse digit shows waves of tissue remodeling, growth, and apoptosis. Wound Repair and Regeneration, 17: 447–455

    Article  PubMed  Google Scholar 

  • Grisel P, Meinhardt A, Lehr H A, Kappenberger L, Barrandon Y, Vassalli G (2008). The MRL mouse repairs both cryogenic and ischemic myocardial infarcts with scar. Cardiovascular Pathology, 17: 14–22

    Article  PubMed  CAS  Google Scholar 

  • Hampton D W, Seitz A, Chen P, Heber-Katz E, Fawcett J W (2004). Altered CNS response to injury in the MRL/MpJ mouse. Neuroscience, 127(4): 821–832

    Article  PubMed  CAS  Google Scholar 

  • Han M, Yang X, Taylor G, Burdsal C A, Anderson R A, Muneoka K (2005). Limb regeneration in higher vertebrates: developing a roadmap. Anat Rec B New Anat, 287B(1): 14–24

    Article  Google Scholar 

  • Harty M, Neff AW, King M W, Mescher A L (2003). Regeneration or scarring: an immunologic perspective. Developmental Dynamics, 226: 268–279

    Article  PubMed  Google Scholar 

  • Havran WL, Allison J P (1988). Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature, 335(6189): 443–445

    Article  PubMed  CAS  Google Scholar 

  • Heber-Katz E (1999). The regenerating mouse ear. Semin Cell Dev Biol, 10(4): 415–419

    Article  PubMed  CAS  Google Scholar 

  • Heber-Katz E, Chen P, Clark L, Zhang X M, Troutman S, Blankenhorn E P (2004a). Regeneration in MRL mice: further genetic loci controlling the ear hole closure trait using MRL and M.m. Castaneus mice. Wound Repair and Regeneration, 12: 384–392

    Article  PubMed  Google Scholar 

  • Heber-Katz E, Leferovich J, Bedelbaeva K, Gourevitch D, Clark L (2004b). The scarless heart and the MRL mouse. Philos Trans R Soc Lond B Biol Sci, 359(1445): 785–793

    Article  PubMed  CAS  Google Scholar 

  • Heber-Katz E, Leferovich J, Bedelbaeva K, Gourevitch D, Clark L (2006). Conjecture: Can continuous regeneration lead to immortality? Studies in the MRL mouse. Rejuvenation Res, 9(1): 3–9

    Article  PubMed  Google Scholar 

  • Heydemann A, Ceco E, Lim J E, Hadhazy M, Ryder P, Moran J L, Beier D R, Palmer A A, McNally E M (2009). Latent TGF-beta-binding protein 4 modifies muscular dystrophy in mice. J Clin Invest, 119(12): 3703–3712

    Article  PubMed  CAS  Google Scholar 

  • Hong Y, Cervantes R B, Tichy E, Tischfield J A, Stambrook P J (2007). Protecting genomic integrity in somatic cells and embryonic stem cells. Mutat Res, 614(1–2): 48–55

    PubMed  CAS  Google Scholar 

  • Hopkinson-Woolley J, Hughes D, Gordon S, Martin P (1994). Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. J Cell Sci, 107(Pt 5): 1159–1167

    PubMed  Google Scholar 

  • Ito M R, Ono M, Itoh J, Nose M (2003). Bone marrow cell transfer of autoimmune diseases in a MRL strain of mice with a deficit in functional Fas ligand: dissociation of arteritis from glomerulone-phritis. Pathol Int, 53(8): 518–524

    Article  PubMed  Google Scholar 

  • Kench J A, Russell D M, Fadok VA, Young S K, Worthen G S, Jones-Carson J, Henson J E, Henson P M, Nemazee D (1999). Aberrant wound healing and TGF-beta production in the autoimmune-prone MRL/+ mouse. Clin Immunol, 92(3): 300–310

    Article  PubMed  CAS  Google Scholar 

  • Leader B, Leder P (2000). Formin-2, a novel formin homology protein of the cappuccino subfamily, is highly expressed in the developing and adult central nervous system. Mech Dev, 93(1–2): 221–231

    Article  PubMed  CAS  Google Scholar 

  • Leferovich J M, Bedelbaeva K, Samulewicz S, Zhang X M, Zwas D, Lankford E B, Heber-Katz E (2001). Heart regeneration in adult MRL mice. Proc Natl Acad Sci USA, 98(17): 9830–9835

    Article  PubMed  CAS  Google Scholar 

  • Li X, Mohan S, Gu W, Baylink D J (2001). Analysis of gene expression in the wound repair/regeneration process. Mammalian Genome, 12: 52–59

    Article  PubMed  CAS  Google Scholar 

  • Li X, Mohan S, Gu W, Miyakoshi N, Baylink D J (2000). Differential protein profile in the ear-punched tissue of regeneration and nonregeneration strains of mice: a novel approach to explore the candidate genes for soft-tissue regeneration. Biochim Biophys Acta, 1524(2–3): 102–109

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Ding Q, Yang K, Zhang T, Li G, Wu G (2011). Meta-analysis of systemic lupus erythematosus and the risk of cervical neoplasia. Rheumatology, 50(2): 343–348

    Article  PubMed  Google Scholar 

  • Mann C J, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano A L, Munoz-Canoves P (2011). Aberrant repair and fibrosis development in skeletal muscle. Skeletal muscle 1, 21

    Article  PubMed  Google Scholar 

  • Masinde G, Li X, Baylink D J, Nguyen B, Mohan S (2005). Isolation of wound healing/regeneration genes using restrictive fragment differential display-PCR in MRL/MPJ and C57BL/6 mice. Biochem Biophys Res Commun, 330(1): 117–122

    Article  PubMed  CAS  Google Scholar 

  • Masinde G L, Li X, Gu W, Davidson H, Mohan S, Baylink D J (2001). Identification of wound healing/regeneration quantitative trait loci (QTL) at multiple time points that explain seventy percent of variance in (MRL/MpJ and SJL/J) mice F2 population. Genome Res, 11(12): 2027–2033

    Article  PubMed  CAS  Google Scholar 

  • McBrearty B A, Clark L D, Zhang XM, Blankenhorn E P, Heber-Katz E (1998). Genetic analysis of a mammalian wound-healing trait. Proc Natl Acad Sci USA, 95(20): 11792–11797

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe A D, Willis H, Beare A, Ferguson M W (2006). Characterizing regeneration in the vertebrate ear. J Anat, 209(4): 439–446

    Article  PubMed  Google Scholar 

  • Michalopoulos G K, DeFrances M C (1997). Liver regeneration. Science, 276(5309): 60–66

    Article  PubMed  CAS  Google Scholar 

  • Midwood K S, Williams L V, Schwarzbauer J E (2004). Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol, 36(6): 1031–1037

    Article  PubMed  CAS  Google Scholar 

  • Moseley F L, Faircloth M E, Lockwood W, Marber M S, Bicknell K A, Valasek P, Brooks G (2011). Limitations of the MRL mouse as a model for cardiac regeneration. J Pharm Pharmacol, 63(5): 648–656

    Article  PubMed  CAS  Google Scholar 

  • Namazi M R, Fallahzadeh M K, Schwartz R A (2011). Strategies for prevention of scars: what can we learn from fetal skin? Int J Dermatol, 50(1): 85–93

    Article  PubMed  Google Scholar 

  • Naseem R H, Meeson A P, Michael Dimaio J, White M D, Kallhoff J, Humphries C, Goetsch S C, DeWindt L J,WilliamsMA, Garry MG (2007). Reparative myocardial mechanisms in adult C57BL/6 and MRL mice following injury. Physiol Genomics, 30(1): 44–52

    Article  PubMed  CAS  Google Scholar 

  • Naviaux R K, Le T P, Bedelbaeva K, Leferovich J, Gourevitch D, Sachadyn P, Zhang X M, Clark L, Heber-Katz E (2009). Retained features of embryonic metabolism in the adult MRL mouse. Mol Genet Metab, 96(3): 133–144

    Article  PubMed  CAS  Google Scholar 

  • Oh Y S, Thomson L E, Fishbein M C, Berman D S, Sharifi B, Chen P S (2004). Scar formation after ischemic myocardial injury in MRL mice. Cardiovascular Pathology, 13: 203–206

    Article  PubMed  Google Scholar 

  • Peled Z M, Phelps E D, Updike D L, Chang J, Krummel T M, Howard E W, Longaker M T (2002). Matrix metalloproteinases and the ontogeny of scarless repair: the other side of the wound healing balance. Plast Reconstr Surg, 110(3): 801–811

    Article  PubMed  Google Scholar 

  • Peng S L, Madaio M P, Craft J (1996). Systemic autoimmunity in LG/J mice. Immunol Lett, 53(2–3): 153–155

    Article  PubMed  CAS  Google Scholar 

  • Potter P K, Cortes-Hernandez J, Quartier P, Botto M, Walport M J (2003). Lupus-prone mice have an abnormal response to thioglycolate and an impaired clearance of apoptotic cells. J Immunol, 170: 3223–3232

    PubMed  CAS  Google Scholar 

  • Rajnoch C, Ferguson S, Metcalfe A D, Herrick S E, Willis H S, Ferguson M W (2003). Regeneration of the ear after wounding in different mouse strains is dependent on the severity of wound trauma. Developmental Dynamics, 226: 388–397

    Article  PubMed  Google Scholar 

  • Rao N, Jhamb D, Milner D J, Li B, Song F, Wang M, Voss S R, Palakal M, King M W, Saranjami B, Nye H L D, Cameron J, Stocum D L (2009). Proteomic analysis of blastema formation in regenerating axolotl limbs. BMC Biol, 7(1): 83

    Article  PubMed  Google Scholar 

  • Robey T E, Murry C E (2008). Absence of regeneration in the MRL/MpJ mouse heart following infarction or cryoinjury. Cardiovascular Pathology, 17: 6–13

    Article  PubMed  CAS  Google Scholar 

  • Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau H M (2008). Self-renewal and expansion of single transplanted muscle stem cells. Nature, 456(7221): 502–506

    Article  PubMed  CAS  Google Scholar 

  • Sachadyn P, Zhang XM, Clark L D, Naviaux R K, Heber-Katz E (2008). Naturally occurring mitochondrial DNA heteroplasmy in the MRL mouse. Mitochondrion, 8(5–6): 358–366

    Article  PubMed  CAS  Google Scholar 

  • Saika S (2007). Yin and yang in cytokine regulation of corneal wound healing: roles of TNF-alpha. Cornea, 26(Supplement 1): S70–S74

    Article  PubMed  Google Scholar 

  • Santiago-Raber M L, Lawson B R, Dummer W, Barnhouse M, Koundouris S, Wilson C B, Kono D H, Theofilopoulos A N (2001). Role of cyclin kinase inhibitor p21 in systemic autoimmunity. J Immunol, 167: 4067–4074

    PubMed  CAS  Google Scholar 

  • Shah M, Foreman D M, Ferguson M W (1995). Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci, 108(Pt 3): 985–1002

    PubMed  CAS  Google Scholar 

  • Stocum D L (1984). The urodele limb regeneration blastema. Determination and organization of the morphogenetic field. Differentiation, 27(1–3): 13–28

    CAS  Google Scholar 

  • Stocum, D.L., and Crawford, K. (1987). Use of retinoids to analyze the cellular basis of positional memory in regenerating amphibian limbs. Biochemistry and Cell Biology, 65: 750–761

    Article  PubMed  CAS  Google Scholar 

  • Tassava R A (1983). Limb regeneration to digit stages occurs in well-fed adult newts after hypophysectomy. J Exp Zool, 225(3): 433–441

    Article  PubMed  CAS  Google Scholar 

  • Theofilopoulos A N, Dixon F J (1985). Murine models of systemic lupus erythematosus. Adv Immunol, 37: 269–290

    Article  PubMed  CAS  Google Scholar 

  • Thuret S, Toni N, Aigner S, Yeo G W, Gage F H (2009). Hippocampus-dependent learning is associated with adult neurogenesis in MRL/MpJ mice. Hippocampus, 19(7): 658–669

    Article  PubMed  CAS  Google Scholar 

  • Tolba R H, Schildberg F A, Decker D, Abdullah Z, Buttner R, Minor T, von Ruecker A (2010). Mechanisms of improved wound healing in Murphy Roths Large (MRL) mice after skin transplantation. Wound Repair Regen, 18(6): 662–670

    Article  PubMed  Google Scholar 

  • Torres V E, Leof E B (2011). Fibrosis, regeneration, and aging: playing chess with evolution. J Am Soc Nephrol, 22(8): 1393–1396

    Article  PubMed  CAS  Google Scholar 

  • Ueno M, Lyons B L, Burzenski L M, Gott B, Shaffer D J, Roopenian D C, Shultz L D (2005). Accelerated wound healing of alkali-burned corneas in MRL mice is associated with a reduced inflammatory signature. Invest Ophthalmol Vis Sci, 46(11): 4097–4106

    Article  PubMed  Google Scholar 

  • Vorotnikova E, McIntosh D, Dewilde A, Zhang J, Reing J E, Zhang L, Cordero K, Bedelbaeva K, Gourevitch D, Heber-Katz E (2010). Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biology, 29: 690–700

    Article  PubMed  CAS  Google Scholar 

  • Wandstrat A, Wakeland E (2001). The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nat Immunol, 2(9): 802–809

    Article  PubMed  CAS  Google Scholar 

  • Ward B D, Furman B D, Huebner J L, Kraus V B, Guilak F, Olson S A (2008). Absence of posttraumatic arthritis following intraarticular fracture in the MRL/MpJ mouse. Arthritis Rheum, 58(3): 744–753

    Article  PubMed  Google Scholar 

  • Watson M L, Rao J K, Gilkeson G S, Ruiz P, Eicher E M, Pisetsky D S, Matsuzawa A, Rochelle J M, Seldin M F (1992). Genetic analysis of MRL-lpr mice: relationship of the Fas apoptosis gene to disease manifestations and renal disease-modifying loci. J Exp Med, 176(6): 1645–1656

    Article  PubMed  CAS  Google Scholar 

  • Whitby D J, Ferguson M W (1991). Immunohistochemical localization of growth factors in fetal wound healing. Dev Biol, 147(1): 207–215

    Article  PubMed  CAS  Google Scholar 

  • Williams B O, Insogna K L (2009). Where Wnts went: the exploding field of Lrp5 and Lrp6 signaling in bone. Journal of Bone and Mineral Research, 24: 171–178

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Christmas P, Wu X R, Wewer U M, Engvall E (1994). Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc Natl Acad Sci USA, 91(12): 5572–5576

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Baylink D J, Masinde G L, Li R, Nguyen B, Davidson HM, Xu S, Mohan S (2007). Mouse chromosome 9 quantitative trait loci for soft tissue regeneration: congenic analysis and fine mapping. Wound Repair and Regeneration, 15: 922–927

    Article  PubMed  Google Scholar 

  • Yu H, Mohan S, Masinde GL, Baylink D J (2005). Mapping the dominant wound healing and soft tissue regeneration QTL in MRL x CAST. Mammalian Genome, 16: 918–924

    Article  PubMed  CAS  Google Scholar 

  • Yuan R, Tsaih S W, Petkova S B, Marin de Evsikova C, Xing S, Marion MA, Bogue MA, Mills K D, Peters L L, Bult C J, et al (2009). Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell, 8(3): 277–287

    Article  PubMed  CAS  Google Scholar 

  • Ziv E, Hu D (2011). Genetic variation in insulin/IGF-1 signaling pathways and longevity. Ageing Res Rev, 10(2): 201–204

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahlke Heydemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heydemann, A. The super super-healing MRL mouse strain. Front. Biol. 7, 522–538 (2012). https://doi.org/10.1007/s11515-012-1192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-012-1192-4

Keywords

Navigation