Skip to main content
Log in

Hedgehog signaling: mechanisms and evolution

  • Review
  • Published:
Frontiers in Biology

Abstract

The Hedgehog (Hh) family of secreted proteins plays essential roles in the development of a wide variety of animal species and underlies multiple human birth defects and cancers. To ensure the proper range of signaling, the Hh proteins are modified with lipids, assembled into water-soluble multimers, and interact with multiple cell surface proteins. In the target cells, a largely conserved intracellular signal transduction pathway, from the cell surface receptor Patched to the Glioma-associated oncogene homolog (Gli) family of transcription factors, mediates the transcriptional responses from fruit flies to mammals. A significant divergence between vertebrates and insects is the vertebrate-specific requirement of cilia for Hh signal transduction and Gli protein activation. Finally, transcription-independent cellular responses to Hh have been described in certain developmental processes. With clinical trial underway to treat Hhrelated diseases, more work is urgently needed to reach a more comprehensive understanding of the molecular mechanisms underlying the regulation of Hh signaling in development and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcedo J, Ayzenzon M, Von Ohlen T, Noll M, Hooper J E (1996). The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell, 86(2): 221–232

    PubMed  CAS  Google Scholar 

  • Allen B L, Tenzen T, McMahon A P (2007). The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev, 21(10): 1244–1257

    PubMed  CAS  Google Scholar 

  • Amanai K, Jiang J (2001). Distinct roles of central missing and dispatched in sending the Hedgehog signal. Development, 128(24): 5119–5127

    PubMed  CAS  Google Scholar 

  • Apionishev S, Katanayeva N M, Marks S A, Kalderon D, Tomlinson A (2005). Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nat Cell Biol, 7(1): 86–92

    PubMed  CAS  Google Scholar 

  • Asaoka Y, Kanai F, Ichimura T, Tateishi K, Tanaka Y, Ohta M, Seto M, Tada M, Ijichi H, Ikenoue T, Kawabe T, Isobe T, Yaffe M B, Omata M (2010). Identification of a suppressive mechanism for Hedgehog signaling through a novel interaction of Gli with 14-3-3. J Biol Chem, 285(6): 4185–4194

    PubMed  CAS  Google Scholar 

  • Aza-Blanc P, Ramírez-Weber F A, Laget M P, Schwartz C, Kornberg T B (1997). Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell, 89(7): 1043–1053

    PubMed  CAS  Google Scholar 

  • Bai C B, Auerbach W, Lee J S, Stephen D, Joyner A L (2002). Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development, 129(20): 4753–4761

    PubMed  CAS  Google Scholar 

  • Bai C B, Stephen D, Joyner A L (2004). All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell, 6(1): 103–115

    PubMed  CAS  Google Scholar 

  • Barzi M, Berenguer J, Menendez A, Alvarez-Rodriguez R, Pons S (2010). Sonic-hedgehog-mediated proliferation requires the localization of PKA to the cilium base. J Cell Sci, 123(Pt 1): 62–69

    PubMed  CAS  Google Scholar 

  • Bellaiche Y, The I, Perrimon N (1998). Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature, 394(6688): 85–88

    PubMed  CAS  Google Scholar 

  • Bergeron S A, Tyurina O V, Miller E, Bagas A, Karlstrom R O (2011). Brother of cdo (umleitung) is cell-autonomously required for Hedgehog-mediated ventral CNS patterning in the zebrafish. Development, 138(1): 75–85

    PubMed  CAS  Google Scholar 

  • Bitgood M J, Shen L, McMahon A P (1996). Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol, 6(3): 298–304

    PubMed  CAS  Google Scholar 

  • Bumcrot D A, Takada R, McMahon A P (1995). Proteolytic processing yields two secreted forms of sonic hedgehog. Mol Cell Biol, 15(4): 2294–2303

    PubMed  CAS  Google Scholar 

  • Burke R, Nellen D, Bellotto M, Hafen E, Senti K A, Dickson B J, Basler K (1999). Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell, 99(7): 803–815

    PubMed  CAS  Google Scholar 

  • Byrd N, Becker S, Maye P, Narasimhaiah R, St-Jacques B, Zhang X, McMahon J, McMahon A, Grabel L (2002). Hedgehog is required for murine yolk sac angiogenesis. Development, 129(2): 361–372

    PubMed  CAS  Google Scholar 

  • Callejo A, Torroja C, Quijada L, Guerrero I (2006). Hedgehog lipid modifications are required for Hedgehog stabilization in the extracellular matrix. Development, 133(3): 471–483

    PubMed  CAS  Google Scholar 

  • Cameron D A, Pennimpede T, Petkovich M (2009). Tulp3 is a critical repressor of mouse hedgehog signaling. Dev Dyn, 238(5): 1140–1149

    PubMed  CAS  Google Scholar 

  • Canettieri G, Di Marcotullio L, Greco A, Coni S, Antonucci L, Infante P, Pietrosanti L, De Smaele E, Ferretti E, Miele E, Pelloni M, De Simone G, Pedone E M, Gallinari P, Giorgi A, Steinkühler C, Vitagliano L, Pedone C, Schinin M E, Screpanti I, Gulino A (2010). Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nat Cell Biol, 12(2): 132–142

    PubMed  CAS  Google Scholar 

  • Capurro M I, Xu P, Shi W, Li F, Jia A, Filmus J (2008). Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev Cell, 14(5): 700–711

    PubMed  CAS  Google Scholar 

  • Caspary T, García-García M J, Huangfu D, Eggenschwiler J T, Wyler M R, Rakeman A S, Alcorn H L, Anderson K V (2002). Mouse Dispatched homolog1 is required for long-range, but not juxtacrine, Hh signaling. Curr Biol, 12(18): 1628–1632

    PubMed  CAS  Google Scholar 

  • Caspary T, Larkins C E, Anderson K V (2007). The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell, 12(5): 767–778

    PubMed  CAS  Google Scholar 

  • Chamoun Z, Mann R K, Nellen D, von Kessler D P, Bellotto M, Beachy P A, Basler K (2001). Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science, 293(5537): 2080–2084

    PubMed  CAS  Google Scholar 

  • Charron F, Stein E, Jeong J, McMahon A P, Tessier-Lavigne M (2003). The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell, 113(1): 11–23

    PubMed  CAS  Google Scholar 

  • Chen J K, Taipale J, Cooper M K, Beachy P A (2002a). Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev, 16(21): 2743–2748

    PubMed  CAS  Google Scholar 

  • Chen J K, Taipale J, Young K E, Maiti T, Beachy P A (2002b). Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA, 99(22): 14071–14076

    PubMed  CAS  Google Scholar 

  • Chen M H, Gao N, Kawakami T, Chuang P T (2005). Mice deficient in the fused homolog do not exhibit phenotypes indicative of perturbed hedgehog signaling during embryonic development. Mol Cell Biol, 25(16): 7042–7053

    PubMed  CAS  Google Scholar 

  • Chen M H, Li Y J, Kawakami T, Xu S M, Chuang P T (2004). Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev, 18(6): 641–659

    PubMed  CAS  Google Scholar 

  • Chen MH, Wilson CW, Li Y J, Law K K, Lu C S, Gacayan R, Zhang X, Hui C C, Chuang P T (2009). Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev, 23(16): 1910–1928

    PubMed  CAS  Google Scholar 

  • Chen Y, Gallaher N, Goodman R H, Smolik S M (1998). Protein kinase A directly regulates the activity and proteolysis of cubitus interruptus. Proc Natl Acad Sci USA, 95(5): 2349–2354

    PubMed  CAS  Google Scholar 

  • Chen Y, Struhl G (1996). Dual roles for patched in sequestering and transducing Hedgehog. Cell, 87(3): 553–563

    PubMed  CAS  Google Scholar 

  • Cheng S Y, Bishop J M (2002). Suppressor of Fused represses Glimediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc Natl Acad Sci USA, 99(8): 5442–5447

    PubMed  CAS  Google Scholar 

  • Cheung H O, Zhang X, Ribeiro A, Mo R, Makino S, Puviindran V, Law K K, Briscoe J, Hui C C (2009). The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci Signal, 2(76): ra29

    PubMed  Google Scholar 

  • Chiang C, Litingtung Y, Harris M P, Simandl B K, Li Y, Beachy P A, Fallon J F (2001). Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function. Dev Biol, 236(2): 421–435

    PubMed  CAS  Google Scholar 

  • Chiang C, Litingtung Y, Lee E, Young K E, Corden J L, Westphal H, Beachy P A (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 383(6599): 407–413

    PubMed  CAS  Google Scholar 

  • Chuang P T, Kawcak T, McMahon A P (2003). Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes Dev, 17(3): 342–347

    PubMed  CAS  Google Scholar 

  • Chuang P T, McMahon A P (1999). Vertebrate Hedgehog signaling modulated by induction of a Hedgehog-binding protein. Nature, 397(6720): 617–621

    PubMed  CAS  Google Scholar 

  • Cooper A F, Yu K P, Brueckner M, Brailey L L, Johnson L, McGrath J M, Bale A E (2005). Cardiac and CNS defects in a mouse with targeted disruption of suppressor of fused. Development, 132(19): 4407–4417

    PubMed  CAS  Google Scholar 

  • Corbit K C, Aanstad P, Singla V, Norman A R, Stainier D Y, Reiter J F (2005). Vertebrate Smoothened functions at the primary cilium. Nature, 437(7061): 1018–1021

    PubMed  CAS  Google Scholar 

  • Cox B, Briscoe J, Ulloa F (2010). SUMOylation by Pias1 regulates the activity of the Hedgehog dependent Gli transcription factors. PLoS ONE, 5(8): e11996

    PubMed  Google Scholar 

  • Dawber R J, Hebbes S, Herpers B, Docquier F, van den Heuvel M (2005). Differential range and activity of various forms of the Hedgehog protein. BMC Dev Biol, 5(1): 21

    PubMed  Google Scholar 

  • Denef N, Neubüser D, Perez L, Cohen S M (2000). Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell, 102(4): 521–531

    PubMed  CAS  Google Scholar 

  • Desbordes S C, Sanson B (2003). The glypican Dally-like is required for Hedgehog signalling in the embryonic epidermis of Drosophila. Development, 130(25): 6245–6255

    PubMed  CAS  Google Scholar 

  • Ding Q, Fukami S, Meng X, Nishizaki Y, Zhang X, Sasaki H, Dlugosz A, Nakafuku M, Hui C (1999). Mouse suppressor of fused is a negative regulator of sonic hedgehog signaling and alters the subcellular distribution of Gli1. Curr Biol, 9(19): 1119–1122

    PubMed  CAS  Google Scholar 

  • Ding Q, Motoyama J, Gasca S, Mo R, Sasaki H, Rossant J, Hui C C (1998). Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development, 125(14): 2533–2543

    PubMed  CAS  Google Scholar 

  • Dyer M A, Farrington S M, Mohn D, Munday J R, Baron M H (2001). Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development, 128(10): 1717–1730

    PubMed  CAS  Google Scholar 

  • Endoh-Yamagami S, Evangelista M, Wilson D, Wen X, Theunissen JW, Phamluong K, Davis M, Scales S J, Solloway M J, de Sauvage F J, Peterson A S (2009). The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol, 19(15): 1320–1326

    PubMed  CAS  Google Scholar 

  • Frank-Kamenetsky M, Zhang XM, Bottega S, Guicherit O, Wichterle H, Dudek H, Bumcrot D, Wang F Y, Jones S, Shulok J, Rubin L L, Porter J A (2002). Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J Biol, 1(2): 10

    PubMed  Google Scholar 

  • Gerdes J M, Davis E E, Katsanis N (2009). The vertebrate primary cilium in development, homeostasis, and disease. Cell, 137(1): 32–45

    PubMed  CAS  Google Scholar 

  • Goodrich L V, Milenković L, Higgins K M, Scott M P (1997). Altered neural cell fates and medulloblastoma in mouse patched mutants. Science, 277(5329): 1109–1113

    PubMed  CAS  Google Scholar 

  • Han C, Belenkaya T Y, Wang B, Lin X (2004). Drosophila glypicans control the cell-to-cell movement of Hedgehog by a dynaminindependent process. Development, 131(3): 601–611

    PubMed  CAS  Google Scholar 

  • Han Y G, Kwok B H, Kernan M J (2003). Intraflagellar transport is required in Drosophila to differentiate sensory cilia but not sperm. Curr Biol, 13(19): 1679–1686

    PubMed  CAS  Google Scholar 

  • Haycraft C J, Banizs B, Aydin-Son Y, Zhang Q, Michaud E J, Yoder B K (2005). Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet, 1(4): e53

    PubMed  Google Scholar 

  • Heberlein U, Wolff T, Rubin G M (1993). The TGF beta homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina. Cell, 75(5): 913–926

    PubMed  CAS  Google Scholar 

  • Heydeck W, Zeng H, Liu A (2009). Planar cell polarity effector gene Fuzzy regulates cilia formation and Hedgehog signal transduction in mouse. Dev Dyn, 238(12): 3035–3042

    PubMed  CAS  Google Scholar 

  • Hirokawa N, Tanaka Y, Okada Y, Takeda S (2006). Nodal flow and the generation of left-right asymmetry. Cell, 125(1): 33–45

    PubMed  CAS  Google Scholar 

  • Hooper J E, Scott M P (1989). The Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell, 59(4): 751–765

    PubMed  CAS  Google Scholar 

  • Hoover A N, Wynkoop A, Zeng H, Jia J, Niswander L A, Liu A (2008). C2cd3 is required for cilia formation and Hedgehog signaling in mouse. Development, 135(24): 4049–4058

    PubMed  CAS  Google Scholar 

  • Houde C, Dickinson R J, Houtzager V M, Cullum R, Montpetit R, Metzler M, Simpson E M, Roy S, Hayden M R, Hoodless P A, Nicholson DW (2006). Hippi is essential for node cilia assembly and Sonic hedgehog signaling. Dev Biol, 300(2): 523–533

    PubMed  CAS  Google Scholar 

  • Hu Q, Milenkovic L, Jin H, Scott M P, Nachury M V, Spiliotis E T, Nelson W J (2010). A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science, 329(5990): 436–439

    PubMed  CAS  Google Scholar 

  • Huangfu D, Anderson K V (2005). Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA, 102(32): 11325–11330

    PubMed  CAS  Google Scholar 

  • Huangfu D, Liu A, Rakeman A S, Murcia N S, Niswander L, Anderson K V (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 426(6962): 83–87

    PubMed  CAS  Google Scholar 

  • Hui C C, Joyner A L (1993). A mouse model of greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat Genet, 3: 241–246

    PubMed  CAS  Google Scholar 

  • Humke E W, Dorn K V, Milenkovic L, Scott M P, Rohatgi R (2010). The output of Hedgehog signaling is controlled by the dynamic association between suppressor of Fused and the Gli proteins. Genes Dev, 24(7): 670–682

    PubMed  CAS  Google Scholar 

  • Jia H, Liu Y, Yan W, Jia J (2009a). PP4 and PP2A regulate Hedgehog signaling by controlling Smo and Ci phosphorylation. Development, 136(2): 307–316

    PubMed  CAS  Google Scholar 

  • Jia J, Kolterud A, Zeng H, Hoover A, Teglund S, Toftgård R, Liu A (2009b). Suppressor of Fused inhibits mammalian Hedgehog signaling in the absence of cilia. Dev Biol, 330(2): 452–460

    PubMed  CAS  Google Scholar 

  • Jia J, Tong C, Jiang J (2003). Smoothened transduces Hedgehog signal by physically interacting with Costal2/Fused complex through its Cterminal tail. Genes Dev, 17(21): 2709–2720

    PubMed  CAS  Google Scholar 

  • Jia J, Tong C, Wang B, Luo L, Jiang J (2004). Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature, 432(7020): 1045–1050

    PubMed  CAS  Google Scholar 

  • Jiang J, Struhl G (1998). Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature, 391(6666): 493–496

    PubMed  CAS  Google Scholar 

  • Jin H, White S R, Shida T, Schulz S, Aguiar M, Gygi S P, Bazan J F, Nachury M V (2010). The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell, 141(7): 1208–1219

    PubMed  CAS  Google Scholar 

  • Kawakami T, Kawcak T, Li Y J, Zhang W, Hu Y, Chuang P T (2002). Mouse dispatched mutants fail to distribute hedgehog proteins and are defective in hedgehog signaling. Development, 129(24): 5753–5765

    PubMed  CAS  Google Scholar 

  • Khaliullina H, Panáková D, Eugster C, Riedel F, Carvalho M, Eaton S (2009). Patched regulates Smoothened trafficking using lipoproteinderived lipids. Development, 136(24): 4111–4121

    PubMed  CAS  Google Scholar 

  • Kovacs J J, Whalen E J, Liu R, Xiao K, Kim J, Chen M, Wang J, Chen W, Lefkowitz R J (2008). Beta-arrestin-mediated localization of smoothened to the primary cilium. Science, 320(5884): 1777–1781

    PubMed  CAS  Google Scholar 

  • Koziel L, Kunath M, Kelly O G, Vortkamp A (2004). Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell, 6(6): 801–813

    PubMed  CAS  Google Scholar 

  • Kraus P, Fraidenraich D, Loomis C A (2001). Some distal limb structures develop in mice lacking Sonic hedgehog signaling. Mech Dev, 100(1): 45–58

    PubMed  CAS  Google Scholar 

  • Krauss S, Concordet J P, Ingham P W (1993). A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell, 75(7): 1431–1444

    PubMed  CAS  Google Scholar 

  • Lee J D, Treisman J E (2001). Sightless has homology to transmembrane acyltransferases and is required to generate active Hedgehog protein. Curr Biol, 11(14): 1147–1152

    PubMed  CAS  Google Scholar 

  • Lee J J, Ekker S C, von Kessler D P, Porter J A, Sun B I, Beachy P A (1994). Autoproteolysis in hedgehog protein biogenesis. Science, 266(5190): 1528–1537

    PubMed  CAS  Google Scholar 

  • Lee Y, Miller H L, Russell H R, Boyd K, Curran T, McKinnon P J (2006). Patched2 modulates tumorigenesis in patched1 heterozygous mice. Cancer Res, 66(14): 6964–6971

    PubMed  CAS  Google Scholar 

  • Lei Q, Zelman A K, Kuang E, Li S, Matise M P (2004). Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord. Development, 131(15): 3593–3604

    PubMed  CAS  Google Scholar 

  • Lewis P M, Dunn M P, McMahon J A, Logan M, Martin J F, St-Jacques B, McMahon A P (2001). Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell, 105(5): 599–612

    PubMed  CAS  Google Scholar 

  • Li Y, Zhang H, Litingtung Y, Chiang C (2006). Cholesterol modification restricts the spread of Shh gradient in the limb bud. Proc Natl Acad Sci USA, 103(17): 6548–6553

    PubMed  CAS  Google Scholar 

  • Liem K F Jr, He M, Ocbina P J, Anderson K V (2009). Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling. Proc Natl Acad Sci U S A, 106(32): 13377–13382

    PubMed  CAS  Google Scholar 

  • Litingtung Y, Chiang C (2000). Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nat Neurosci, 3(10): 979–985

    PubMed  CAS  Google Scholar 

  • Litingtung Y, Dahn R D, Li Y, Fallon J F, Chiang C (2002). Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature, 418(6901): 979–983

    PubMed  CAS  Google Scholar 

  • Liu A, Wang B, Niswander L A (2005). Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development, 132(13): 3103–3111

    PubMed  CAS  Google Scholar 

  • Lum L, Yao S, Mozer B, Rovescalli A, Von Kessler D, Nirenberg M, Beachy P A (2003a). Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science, 299(5615): 2039–2045

    PubMed  CAS  Google Scholar 

  • Lum L, Zhang C, Oh S, Mann R K, von Kessler D P, Taipale J, Weis-Garcia F, Gong R, Wang B, Beachy P A (2003b). Hedgehog signal transduction via Smoothened association with a cytoplasmic complex scaffolded by the atypical kinesin, Costal-2. Mol Cell, 12(5): 1261–1274

    PubMed  CAS  Google Scholar 

  • Ma C, Zhou Y, Beachy P A, Moses K (1993). The segment polarity gene hedgehog is required for progression of the morphogenetic furrow in the developing Drosophila eye. Cell, 75(5): 927–938

    PubMed  CAS  Google Scholar 

  • Ma Y, Erkner A, Gong R, Yao S, Taipale J, Basler K, Beachy P A (2002). Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell, 111(1): 63–75

    PubMed  CAS  Google Scholar 

  • Marigo V, Davey R A, Zuo Y, Cunningham J M, Tabin C J (1996). Biochemical evidence that patched is the Hedgehog receptor. Nature, 384(6605): 176–179

    PubMed  CAS  Google Scholar 

  • Martinelli D C, Fan C M (2007). Gas1 extends the range of Hedgehog action by facilitating its signaling. Genes Dev, 21(10): 1231–1243

    PubMed  CAS  Google Scholar 

  • Matise MP, Epstein D J, Park H L, Platt K A, Joyner A L (1998). Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development, 125: 2759–2770

    PubMed  CAS  Google Scholar 

  • Matise M P, Joyner A L (1999). Gli genes in development and cancer. Oncogene, 18(55): 7852–7859

    PubMed  CAS  Google Scholar 

  • May S R, Ashique A M, Karlen M, Wang B, Shen Y, Zarbalis K, Reiter J, Ericson J, Peterson A S (2005). Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol, 287(2): 378–389

    PubMed  CAS  Google Scholar 

  • McCarthy R A, Barth J L, Chintalapudi M R, Knaak C, Argraves W S (2002). Megalin functions as an endocytic sonic hedgehog receptor. J Biol Chem, 277(28): 25660–25667

    PubMed  CAS  Google Scholar 

  • McLellan J S, Zheng X, Hauk G, Ghirlando R, Beachy P A, Leahy D J (2008). The mode of Hedgehog binding to Ihog homologues is not conserved across different phyla. Nature, 455(7215): 979–983

    PubMed  CAS  Google Scholar 

  • Merchant M, Evangelista M, Luoh S M, Frantz G D, Chalasani S, Carano R A, van Hoy M, Ramirez J, Ogasawara A K, McFarland L M, Filvaroff E H, French D M, de Sauvage F J (2005). Loss of the serine/threonine kinase fused results in postnatal growth defects and lethality due to progressive hydrocephalus. Mol Cell Biol, 25(16): 7054–7068

    PubMed  CAS  Google Scholar 

  • Methot N, Basler K (2000). Suppressor of fused opposes hedgehog signal transduction by impeding nuclear accumulation of the activator form of Cubitus interruptus. Development, 127(18): 4001–4010

    PubMed  CAS  Google Scholar 

  • Methot N, Basler K (2001). An absolute requirement for Cubitus interruptus in Hedgehog signaling. Development, 128(5): 733–742

    PubMed  CAS  Google Scholar 

  • Micchelli C A, The I, Selva E, Mogila V, Perrimon N (2002). Rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling. Development, 129(4): 843–851

    PubMed  CAS  Google Scholar 

  • Milenkovic L, Scott M P, Rohatgi R (2009). Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium. J Cell Biol, 187(3): 365–374

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Wen X, Chih B, Nelson C D, Lane W S, Scales S J, Jackson P K (2010). TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G proteincoupled receptors into primary cilia. Genes Dev, 24(19): 2180–2193

    PubMed  CAS  Google Scholar 

  • Nachury M V, Loktev A V, Zhang Q, Westlake C J, Peränen J, Merdes A, Slusarski D C, Scheller R H, Bazan J F, Sheffield V C, Jackson P K (2007). A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell, 129(6): 1201–1213

    PubMed  CAS  Google Scholar 

  • Nakano Y, Guerrero I, Hidalgo A, Taylor A, Whittle J R, Ingham P W (1989). A protein with several possible membrane-spanning domains encoded by the Drosophila segment polarity gene patched. Nature, 341(6242): 508–513

    PubMed  CAS  Google Scholar 

  • Norman R X, Ko H W, Huang V, Eun C M, Abler L L, Zhang Z, Sun X, Eggenschwiler J T (2009). Tubby-like protein 3 (TULP3) regulates patterning in the mouse embryo through inhibition of Hedgehog signaling. Hum Mol Genet, 18(10): 1740–1754

    PubMed  CAS  Google Scholar 

  • Nusslein-Volhard C, Wieschaus E (1980). Mutations affecting segment number and polarity in Drosophila. Nature, 287(5785): 795–801

    PubMed  CAS  Google Scholar 

  • Nybakken K, Vokes S A, Lin T Y, McMahon A P, Perrimon N (2005). A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nat Genet, 37(12): 1323–1332

    PubMed  CAS  Google Scholar 

  • Ocbina P J, Anderson K V (2008). Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. Dev Dyn, 237(8): 2030–2038

    PubMed  Google Scholar 

  • Ogden S K, Ascano M Jr, Stegman M A, Suber L M, Hooper J E, Robbins D J (2003). Identification of a functional interaction between the transmembrane protein Smoothened and the kinesin-related protein Costal2. Curr Biol, 13(22): 1998–2003

    PubMed  CAS  Google Scholar 

  • Ogden S K, Fei D L, Schilling N S, Ahmed Y F, Hwa J, Robbins D J (2008). G protein Galphai functions immediately downstream of Smoothened in Hedgehog signalling. Nature, 456(7224): 967–970

    PubMed  CAS  Google Scholar 

  • Okada A, Charron F, Morin S, Shin D S, Wong K, Fabre P J, Tessier-Lavigne M, McConnell S K (2006). Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature, 444(7117): 369–373

    PubMed  CAS  Google Scholar 

  • Orenic T V, Slusarski D C, Kroll K L, Holmgren R A (1990). Cloning and characterization of the segment polarity gene cubitus interruptus Dominant of Drosophila. Genes Dev, 4(6): 1053–1067

    PubMed  CAS  Google Scholar 

  • Paces-Fessy M, Boucher D, Petit E, Paute-Briand S, Blanchet-Tournier M F (2004). The negative regulator of Gli, suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins. Biochem J, 378(Pt 2): 353–362

    PubMed  CAS  Google Scholar 

  • Pan Y, Bai C B, Joyner A L, Wang B (2006). Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol, 26(9): 3365–3377

    PubMed  CAS  Google Scholar 

  • Panakova D, Sprong H, Marois E, Thiele C, Eaton S (2005). Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature, 435(7038): 58–65

    PubMed  CAS  Google Scholar 

  • Park H L, Bai C, Platt K A, Matise MP, Beeghly A, Hui C C, Nakashima M, Joyner A L (2000). Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development, 127: 1593–1605

    PubMed  CAS  Google Scholar 

  • Park T J, Haigo S L, Wallingford J B (2006). Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nat Genet, 38(3): 303–311

    PubMed  CAS  Google Scholar 

  • Patterson V L, Damrau C, Paudyal A, Reeve B, Grimes D T, Stewart M E, Williams D J, Siggers P, Greenfield A, Murdoch J N (2009). Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway. Hum Mol Genet, 18(10): 1719–1739

    PubMed  CAS  Google Scholar 

  • Pearse R V 2nd, Collier L S, Scott M P, Tabin C J (1999). Vertebrate homologs of Drosophila suppressor of fused interact with the gli family of transcriptional regulators. Dev Biol, 212(2): 323–336

    PubMed  CAS  Google Scholar 

  • Pepinsky R B, Zeng C, Wen D, Rayhorn P, Baker D P, Williams K P, Bixler S A, Ambrose C M, Garber E A, Miatkowski K, Taylor F R, Wang E A, Galdes A (1998). Identification of a palmitic acidmodified form of human Sonic hedgehog. J Biol Chem, 273(22): 14037–14045

    PubMed  CAS  Google Scholar 

  • Porter J A, Ekker S C, Park WJ, von Kessler D P, Young K E, Chen C H, Ma Y, Woods A S, Cotter R J, Koonin E V, Beachy P A (1996a). Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell, 86(1): 21–34

    PubMed  CAS  Google Scholar 

  • Porter J A, von Kessler D P, Ekker S C, Young K E, Lee J J, Moses K, Beachy P A (1995). The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature, 374(6520): 363–366

    PubMed  CAS  Google Scholar 

  • Porter J A, Young K E, Beachy P A (1996b). Cholesterol modification of hedgehog signaling proteins in animal development. Science, 274(5285): 255–259

    PubMed  CAS  Google Scholar 

  • Preat T (1992). Characterization of Suppressor of fused, a complete suppressor of the fused segment polarity gene of Drosophila melanogaster. Genetics, 132(3): 725–736

    PubMed  CAS  Google Scholar 

  • Price M A, Kalderon D (1999). Proteolysis of cubitus interruptus in Drosophila requires phosphorylation by protein kinase A. Development, 126(19): 4331–4339

    PubMed  CAS  Google Scholar 

  • Price M A, Kalderon D (2002). Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell, 108(6): 823–835

    PubMed  CAS  Google Scholar 

  • Qin J, Lin Y, Norman R X, Ko H W, Eggenschwiler J T (2011). Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components. Proc Natl Acad Sci USA, 108(4): 1456–1461

    PubMed  CAS  Google Scholar 

  • Rink J C, Gurley K A, Elliott S A, Sánchez Alvarado A (2009). Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science, 326(5958): 1406–1410

    PubMed  CAS  Google Scholar 

  • Robbins D J, Nybakken K E, Kobayashi R, Sisson J C, Bishop J M, Thérond P P (1997). Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell, 90(2): 225–234

    PubMed  CAS  Google Scholar 

  • Roelink H, Porter J A, Chiang C, Tanabe Y, Chang D T, Beachy P A, Jessell T M (1995). Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell, 81(3): 445–455

    PubMed  CAS  Google Scholar 

  • Rohatgi R, Milenkovic L, Corcoran R B, Scott M P (2009). Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc Natl Acad Sci USA, 106(9): 3196–3201

    PubMed  CAS  Google Scholar 

  • Rohatgi R, Milenkovic L, Scott M P (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science, 317(5836): 372–376

    PubMed  CAS  Google Scholar 

  • Rohatgi R, Snell WJ (2010). The ciliary membrane. Curr Opin Cell Biol, 22(4): 541–546

    PubMed  CAS  Google Scholar 

  • Rosenbaum J L, Witman G B (2002). Intraflagellar transport. Nat Rev Mol Cell Biol, 3(11): 813–825

    PubMed  CAS  Google Scholar 

  • Ruel L, Rodriguez R, Gallet A, Lavenant-Staccini L, Thérond P P (2003). Stability and association of Smoothened, Costal2 and Fused with Cubitus interruptus are regulated by Hedgehog. Nat Cell Biol, 5(10): 907–913

    PubMed  CAS  Google Scholar 

  • Sarpal R, Todi S V, Sivan-Loukianova E, Shirolikar S, Subramanian N, Raff E C, Erickson J W, Ray K, Eberl D F (2003). Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm tails. Curr Biol, 13(19): 1687–1696

    PubMed  CAS  Google Scholar 

  • Sisson B E, Ziegenhorn S L, Holmgren R A (2006). Regulation of Ci and Su(fu) nuclear import in Drosophila. Dev Biol, 294(1): 258–270

    PubMed  CAS  Google Scholar 

  • Sisson J C, Ho K S, Suyama K, Scott M P (1997). Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell, 90(2): 235–245

    PubMed  CAS  Google Scholar 

  • St-Jacques B, Hammerschmidt M, McMahon A P (1999). Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev, 13(16): 2072–2086

    PubMed  CAS  Google Scholar 

  • Stone D M, Hynes M, Armanini M, Swanson T A, Gu Q, Johnson R L, Scott MP, Pennica D, Goddard A, Phillips H, Noll M, Hooper J E, de Sauvage F, Rosenthal A (1996). The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature, 384(6605): 129–134

    PubMed  CAS  Google Scholar 

  • Stone D M, Murone M, Luoh S, Ye W, Armanini M P, Gurney A, Phillips H, Brush J, Goddard A, de Sauvage F J, Rosenthal A (1999). Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli. J Cell Sci, 112(Pt 23): 4437–4448

    PubMed  CAS  Google Scholar 

  • Svard J, Heby-Henricson K, Persson-Lek M, Rozell B, Lauth M, Bergström A, Ericson J, Toftgård R, Teglund S (2006). Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell, 10(2): 187–197

    PubMed  Google Scholar 

  • Tabata T, Kornberg T B (1994). Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell, 76(1): 89–102

    PubMed  CAS  Google Scholar 

  • Taipale J, Cooper M K, Maiti T, Beachy P A (2002). Patched acts catalytically to suppress the activity of Smoothened. Nature, 418(6900): 892–897

    PubMed  CAS  Google Scholar 

  • Tay S Y, Ingham P W, Roy S (2005). A homologue of the Drosophila kinesin-like protein Costal2 regulates Hedgehog signal transduction in the vertebrate embryo. Development, 132(4): 625–634

    PubMed  CAS  Google Scholar 

  • Tenzen T, Allen B L, Cole F, Kang J S, Krauss R S, McMahon A P (2006). The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev Cell, 10(5): 647–656

    PubMed  CAS  Google Scholar 

  • The I, Bellaiche Y, Perrimon N (1999). Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol Cell, 4(4): 633–639

    PubMed  CAS  Google Scholar 

  • Tian H, Jeong J, Harfe B D, Tabin C J, McMahon A P (2005). Mouse Disp1 is required in sonic hedgehog-expressing cells for paracrine activity of the cholesterol-modified ligand. Development, 132(1): 133–142

    PubMed  CAS  Google Scholar 

  • Tran P V, Haycraft C J, Besschetnova T Y, Turbe-Doan A, Stottmann R W, Herron B J, Chesebro A L, Qiu H, Scherz P J, Shah J V, Yoder B K, Beier D R (2008). THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat Genet, 40(4): 403–410

    PubMed  CAS  Google Scholar 

  • Tukachinsky H, Lopez L V, Salic A (2010). A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J Cell Biol, 191(2): 415–428

    PubMed  CAS  Google Scholar 

  • Varjosalo M, Li S P, Taipale J (2006). Divergence of hedgehog signal transduction mechanism between Drosophila and mammals. Dev Cell, 10(2): 177–186

    PubMed  CAS  Google Scholar 

  • Von Hoff D D, LoRusso P M, Rudin C M, Reddy J C, Yauch R L, Tibes R, Weiss G J, Borad MJ, Hann C L, Brahmer J R, Mackey HM, Lum B L, Darbonne WC, Marsters J C Jr, de Sauvage F J, Low J A (2009). Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med, 361(12): 1164–1172

    Google Scholar 

  • Wang B, Fallon J F, Beachy P A (2000a). Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell, 100(4): 423–434

    PubMed  CAS  Google Scholar 

  • Wang C, Pan Y, Wang B (2010). Suppressor of fused and Spop regulate the stability, processing and function of Gli2 and Gli3 full-length activators but not their repressors. Development, 137(12): 2001–2009

    PubMed  CAS  Google Scholar 

  • Wang G, Amanai K, Wang B, Jiang J (2000b). Interactions with Costal2 and suppressor of fused regulate nuclear translocation and activity of cubitus interruptus. Genes Dev, 14(22): 2893–2905

    PubMed  CAS  Google Scholar 

  • Wang Y, Zhou Z, Walsh C T, McMahon A P (2009). Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proc Natl Acad Sci USA, 106(8): 2623–2628

    PubMed  CAS  Google Scholar 

  • Wen X, Lai C K, Evangelista M, Hongo J A, de Sauvage F J, Scales S J (2010). Kinetics of hedgehog-dependent full-length Gli3 accumulation in primary cilia and subsequent degradation. Mol Cell Biol, 30(8): 1910–1922

    PubMed  CAS  Google Scholar 

  • Wijgerde M, McMahon J A, Rule M, McMahon A P (2002). A direct requirement for Hedgehog signaling for normal specification of all ventral progenitor domains in the presumptive mammalian spinal cord. Genes Dev, 16(22): 2849–2864

    PubMed  CAS  Google Scholar 

  • Williams E H, Pappano W N, Saunders A M, Kim M S, Leahy D J, Beachy P A (2010). Dally-like core protein and its mammalian homologues mediate stimulatory and inhibitory effects on Hedgehog signal response. Proc Natl Acad Sci USA, 107(13): 5869–5874

    PubMed  CAS  Google Scholar 

  • Wilson C W, Chen M H, Chuang P T (2009a). Smoothened adopts multiple active and inactive conformations capable of trafficking to the primary cilium. PLoS ONE, 4(4): e5182

    PubMed  Google Scholar 

  • Wilson C W, Nguyen C T, Chen M H, Yang J H, Gacayan R, Huang J, Chen J N, Chuang P T (2009b). Fused has evolved divergent roles in vertebrate Hedgehog signalling and motile ciliogenesis. Nature, 459(7243): 98–102

    PubMed  CAS  Google Scholar 

  • Yam P T, Langlois S D, Morin S, Charron F (2009). Sonic hedgehog guides axons through a noncanonical, Src-family-kinase-dependent signaling pathway. Neuron, 62(3): 349–362

    PubMed  CAS  Google Scholar 

  • Yan D, Wu Y, Yang Y, Belenkaya T Y, Tang X, Lin X (2010). The cellsurface proteins Dally-like and Ihog differentially regulate Hedgehog signaling strength and range during development. Development, 137(12): 2033–2044

    PubMed  CAS  Google Scholar 

  • Yao S, Lum L, Beachy P (2006). The ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell, 125(2): 343–357

    PubMed  CAS  Google Scholar 

  • Yauch R L, Dijkgraaf G J, Alicke B, Januario T, Ahn C P, Holcomb T, Pujara K, Stinson J, Callahan C A, Tang T, Bazan J F, Kan Z, Seshagiri S, Hann C L, Gould S E, Low J A, Rudin C M, de Sauvage F J (2009). Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science, 326(5952): 572–574

    PubMed  CAS  Google Scholar 

  • Yavari A, Nagaraj R, Owusu-Ansah E, Folick A, Ngo K, Hillman T, Call G, Rohatgi R, Scott M P, Banerjee U (2010). Role of lipid metabolism in smoothened derepression in hedgehog signaling. Dev Cell, 19(1): 54–65

    PubMed  CAS  Google Scholar 

  • Yin Y, Bangs F, Paton I R, Prescott A, James J, Davey M G, Whitley P, Genikhovich G, Technau U, Burt DW, Tickle C (2009). The Talpid3 gene (KIAA0586) encodes a centrosomal protein that is essential for primary cilia formation. Development, 136(4): 655–664

    PubMed  CAS  Google Scholar 

  • Zeng H, Hoover A N, Liu A (2010a). PCP effector gene Inturned is an important regulator of cilia formation and embryonic development in mammals. Dev Biol, 339(2): 418–428

    PubMed  CAS  Google Scholar 

  • Zeng H, Jia J, Liu A (2010b). Coordinated translocation of mammalian Gli proteins and suppressor of fused to the primary cilium. PLoS ONE, 5(12): e15900

    PubMed  CAS  Google Scholar 

  • Zeng X, Goetz J A, Suber LM, Scott WJ Jr, Schreiner CM, Robbins D J (2001). A freely diffusible form of Sonic hedgehog mediates longrange signalling. Nature, 411(6838): 716–720

    PubMed  CAS  Google Scholar 

  • Zhang C, Williams E H, Guo Y, Lum L, Beachy P A (2004). Extensive phosphorylation of Smoothened in Hedgehog pathway activation. Proc Natl Acad Sci USA, 101(52): 17900–17907

    PubMed  CAS  Google Scholar 

  • Zhang Q, Shi Q, Chen Y, Yue T, Li S, Wang B, Jiang J (2009). Multiple Ser/Thr-rich degrons mediate the degradation of Ci/Gli by the Cul3-HIB/SPOP E3 ubiquitin ligase. Proc Natl Acad Sci USA, 106(50): 21191–21196

    PubMed  CAS  Google Scholar 

  • Zhang W, Zhao Y, Tong C, Wang G, Wang B, Jia J, Jiang J (2005). Hedgehog-regulated Costal2-kinase complexes control phosphorylation and proteolytic processing of Cubitus interruptus. Dev Cell, 8(2): 267–278

    PubMed  CAS  Google Scholar 

  • Zhang X M, Ramalho-Santos M, McMahon A P (2001). Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell, 106(2): 781–792

    PubMed  CAS  Google Scholar 

  • Zhao Y, Tong C, Jiang J (2007). Hedgehog regulates smoothened activity by inducing a conformational switch. Nature, 450(7167): 252–258

    PubMed  CAS  Google Scholar 

  • Zheng X, Mann R K, Sever N, Beachy P A (2010). Genetic and biochemical definition of the Hedgehog receptor. Genes Dev, 24(1): 57–71

    PubMed  CAS  Google Scholar 

  • Zhu A J, Zheng L, Suyama K, Scott M P (2003). Altered localization of Drosophila Smoothened protein activates Hedgehog signal transduction. Genes Dev, 17(10): 1240–1252

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, X., Liu, A. Hedgehog signaling: mechanisms and evolution. Front. Biol. 6, 504–521 (2011). https://doi.org/10.1007/s11515-011-1146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-011-1146-2

Keywords

Navigation