Skip to main content
Log in

Drosophila highwire gene modulates acute ethanol sensitivity in the nervous system

  • Research Article
  • Published:
Frontiers in Biology

Abstract

Animals exhibit behavioral differences in their sensitivity to ethanol, a trait that is at least in part due to genetic predispositions. This study has implicated a large neuronal protein involving Highwire, a Drosophila E3 ubiquitin ligase (Hiw, a homolog of Pam, a protein associated with Myc found in humans) in acute sensitivity to ethanol sedation. Flies lacking Hiw were hypersensitive to the sedating effect of ethanol whereas those overexpressing Hiw showed decreased sensitivity to ethanol. Furthermore, RNAi functional knockdown of Hiw in adult neurons or ellipsoid body neurons showed increased sensitivity to ethanol sedation. None of these manipulations of the hiw gene caused changes in the rate of ethanol absorption and/or metabolism. These results suggest a previously unknown role for this highly conserved gene in regulating the behavioral responses to an addictive drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger K H, Heberlein U, Moore M S (2004). Rapid and chronic: two distinct forms of ethanol tolerance in Drosophila. Alcohol Clin Exp Res, 28(10): 1469–1480

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Endo K, Wu K, Rodan A R, Heberlein U, Davis R L (2001). Drosophila fasciclinII is required for the formation of odor memories and for normal sensitivity to alcohol. Cell, 105(6): 757–768

    Article  PubMed  CAS  Google Scholar 

  • Collins C A, Wairkar Y P, Johnson S L, DiAntonio A (2006). Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron, 51(1): 57–59

    Article  PubMed  CAS  Google Scholar 

  • DiAntonio A, Haghighi A P, Portman S L, Lee J D, Amaranto A M, Goodman C S (2001). Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature, 412(6845): 449–452

    Article  PubMed  CAS  Google Scholar 

  • Han S, Witt R M, Santos T M, Polizzano C, Sabatini B L, Ramesh V (2008). Pam (Protein associated with Myc) functions as an E3 ubiquitin ligase and regulates TSC/mTOR signaling. Cell Signal, 20(6): 1084–1091

    Article  PubMed  CAS  Google Scholar 

  • Hiraishi H, Okada M, Ohtsu I, Takagi H (2009). A functional analysis of the yeast ubiquitin ligase Rsp5: the involvement of the ubiquitin-conjugating enzyme Ubc4 and poly-ubiquitination in ethanolinduced down-regulation of targeted proteins. Biosci Biotechnol Biochem, 73(10): 2268–2273

    Article  PubMed  CAS  Google Scholar 

  • McCabe B D, Hom S, Aberle H, Fetter R D, Marques G, Haerry T E, Wan H, O’Connor M B, Goodman C S, Haghighi A P (2004). Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron, 41(6): 891–905

    Article  PubMed  CAS  Google Scholar 

  • Miguel-Hidalgo J J (2009). The role of glial cells in drug abuse. Curr Drug Abuse Rev, 2(1): 76–82

    Article  PubMed  CAS  Google Scholar 

  • Moore M S, DeZazzo J, Luk A Y, Tully T, Singh C M, Heberlein U (1998). Ethanol intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell, 93(6): 997–9007

    Article  PubMed  CAS  Google Scholar 

  • Nakata K, Abrams B, Grill B, Goncharov A, Huang X, Chisholm A D, Jin Y (2005). Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell, 120(3): 407–420

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Zhou Y, Guo C, Gong H, Gong Z, Liu L (2009). Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn Mem, 16(5): 289–295

    Article  PubMed  Google Scholar 

  • Pierre S C, Häusler J, Birod K, Geisslinger G, Scholich K (2004). PAM mediates sustained inhibition of cAMP signaling by sphingosine-1-phosphate. EMBO J, 23(15): 3031–3040

    Article  PubMed  CAS  Google Scholar 

  • Renn S C P, Armstrong J D, Yang M, Wang Z, An X, Kaiser K, Taghert P H (1999). Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol, 41(2): 189–207

    Article  PubMed  CAS  Google Scholar 

  • Rodan A R, Kiger J A Jr, Heberlein U (2002). Functional dissection of neuroanatomical loci regulating ethanol sensitivity in Drosophila. J Neurosci, 22(21): 9490–9501

    PubMed  CAS  Google Scholar 

  • Schuckit M A, Gold E O (1988). A simultaneous evaluation of multiple markers of ethanol/placebo challenges in sons of alcoholics and controls. Arch Gen Psychiatry, 45(3): 211–216

    PubMed  CAS  Google Scholar 

  • Schuckit M A, Tsuang J W, Anthenelli R M, Tipp J E, Nurnberger J I Jr (1996). Alcohol challenges in young men from alcoholic pedigrees and control families: a report from the COGA project. J Stud Alcohol, 57(4): 368–377

    PubMed  CAS  Google Scholar 

  • Sharma P, Asztalos Z, Ayyub C, de Bruyne M, Dornan A J, Gomez-Hernandez A, Keane J, Killeen J, Kramer S, Madhavan M, Roe H, Sherkhane P D, Siddiqi K, Silva E, Carlson J R, Goodwin S F, Heisenberg M, Krishnan K, Kyriacou C P, Partridge L, Riesgo-Escovar J, Rodrigues V, Tully T, O’Kane C J (2005). Isogenic autosomes to be applied in optimal screening for novel mutants with viable phenotypes in Drosophila melanogaster. J Neurogenet, 19(2): 57–85

    Article  PubMed  CAS  Google Scholar 

  • Urizar N L, Yang Z, Edenberg H J, Davis R L (2007). Drosophila homer is required in a small set of neurons including the ellipsoid body for normal ethanol sensitivity and tolerance. J Neurosci, 27(17): 4541–4551

    Article  PubMed  CAS  Google Scholar 

  • Wan H I, DiAntonio A, Fetter R D, Bergstrom K, Strauss R, Goodman C S (2000). Highwire regulates synaptic growth in Drosophila. Neuron, 26(2): 313–329

    Article  PubMed  CAS  Google Scholar 

  • Wand G, Levine M, Zweifel L, Schwindinger W, Abel T (2001). The cAMP-protein kinase A signal transduction pathway modulates ethanol consumption and sedative effects of ethanol. J Neurosci, 21: 5297–5303

    PubMed  CAS  Google Scholar 

  • Wen T, Parrish C A, Xu D, Wu Q, Shen P (2005). Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity. Proc Natl Acad Sci USA, 102(6): 2141–2146

    Article  PubMed  CAS  Google Scholar 

  • Wolf F W, Heberlein U (2003). Invertebrate models of drug abuse. J Neurobiol, 54(1): 161–178

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Wairkar Y P, Collins C A, DiAntonio A (2005). Highwire function at the Drosophila neuromuscular junction: spatial, structural, and temporal requirements. J Neurosci, 25(42): 9557–9566

    Article  PubMed  CAS  Google Scholar 

  • Wu C L, Xia S, Fu T F, Wang H, Chen Y H, Leong D, Chiang A S, Tully T (2007). Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat Neurosci, 10(12): 1578–1586

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Pohli S, Durany N, Ozawa H, Saito T, Boissl K W, Zöchling R, Riederer P, Böning J, Götz M E (2001). Increased levels of calcium-sensitive adenylyl cyclase subtypes in the limbic system of alcoholics: evidence for a specific role of cAMP signaling in the human addictive brain. Brain Res, 895(1–2): 233–237

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awoyemi A. Awofala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awofala, A.A. Drosophila highwire gene modulates acute ethanol sensitivity in the nervous system. Front. Biol. 6, 414–421 (2011). https://doi.org/10.1007/s11515-011-1144-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-011-1144-4

Keywords

Navigation