Skip to main content
Log in

A multi-dimensional Markov chain and the Meixner ensemble

  • Published:
Arkiv för Matematik

Abstract

We show that the transition probability of the Markov chain (G(i,1),...,G(i,n))i≥1, where the G(i,j)’s are certain directed last-passage times, is given by a determinant of a special form. An analogous formula has recently been obtained by Warren in a Brownian motion model. Furthermore we demonstrate that this formula leads to the Meixner ensemble when we compute the distribution function for G(m,n). We also obtain the Fredholm determinant representation of this distribution, where the kernel has a double contour integral representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baryshnikov, Y., GUEs and queues, Probab. Theory Related Fields119 (2001), 256–274.

    Article  MATH  MathSciNet  Google Scholar 

  2. Borodin, A., Okounkov, A. and Olshanski, G., Asymptotics of Plancherel measures for symmetric groups, J. Amer. Math. Soc.13 (2000), 481–515.

    Article  MATH  MathSciNet  Google Scholar 

  3. Borodin, A. and Olshanski, G., Stochastic dynamics related to Plancherel measure on partitions, in Representation Theory, Dynamical Systems, and Asymptotic Combinatorics, Amer. Math. Soc. Transl. 217, pp. 9–21, Amer. Math. Soc., Providence, RI, 2006.

    Google Scholar 

  4. Brankov, J. G., Priezzhev, V. B. and Shelest, R. V., Generalized determinant solution of the discrete-time totally asymmetric exclusion process and zero-range process, Phys. Rev. E69 (2004), 066136, 9.

    Article  MathSciNet  Google Scholar 

  5. Dieker, A. B. and Warren, J., Determinantal transition kernels for some interacting particles on the line, Preprint, 2007. arXiv:0707.1843.

    Google Scholar 

  6. Gravner, J., Tracy, C. A. and Widom, H., A growth model in a random environment, Ann. Probab.30:3 (2002), 1340–1368.

    Article  MATH  MathSciNet  Google Scholar 

  7. Johansson, K., Shape fluctuations and random matrices, Comm. Math. Phys.209 (2000), 437–476.

    Article  MATH  MathSciNet  Google Scholar 

  8. Johansson, K., Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. of Math.153 (2001), 259–296.

    Article  MATH  MathSciNet  Google Scholar 

  9. Johansson, K., Discrete polynuclear growth and determinantal processes, Comm. Math. Phys.242 (2003), 277–329.

    MATH  MathSciNet  Google Scholar 

  10. Johansson, K., Random matrices and determinantal processes, in Mathematical Statistical Physics, Session83 (Les Houches, 2005), Chapter 1, Elsevier, Amsterdam, 2006.

  11. Koekoek, R. and Swarttouw, R., The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics, Report no. 98-17, 1998 available at http://fa.its.tudelft.nl/˜koekoek/askey/.

  12. Krattenthaler, C., Advanced determinant calculus, Séminaire Lotharingien de CombinatoireB42q (1999), 67pp.

  13. Nagao, T. and Sasamoto, T., Asymmetric simple exclusion process and modified random matrix ensembles, Nuclear Phys. B699 (2004), 487–502.

    Article  MATH  MathSciNet  Google Scholar 

  14. Okounkov, A., Infinite wedge and random partitions, Selecta Math.7 (2001), 57–81.

    Article  MATH  MathSciNet  Google Scholar 

  15. Rákos, A. and Schütz, G. M., Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process, J. Stat. Phys.118 (2005), 511–530.

    Article  MATH  MathSciNet  Google Scholar 

  16. Schütz, G. M., Exact solution of the master equation for the asymmetric exclusion process, J. Stat. Phys.88 (1997), 427–445.

    Article  MATH  Google Scholar 

  17. Tracy, C. A. and Widom, H., Integral formulas for the asymmetric simple exclusion process, Comm. Math. Phys.279 (2008), 815–844.

    Article  MATH  MathSciNet  Google Scholar 

  18. Warren, J., Dyson’s Brownian motions, intertwining and interlacing, Electron. J. Probab.12 (2007), 573–590.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Johansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, K. A multi-dimensional Markov chain and the Meixner ensemble. Ark Mat 48, 79–95 (2010). https://doi.org/10.1007/s11512-008-0089-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11512-008-0089-6

Keywords

Navigation