Skip to main content
Log in

The mean field traveling salesman and related problems

  • Published:
Acta Mathematica

Abstract

The edges of a complete graph on n vertices are assigned i.i.d. random costs from a distribution for which the interval [0, t] has probability asymptotic to t as t→0 through positive values. In this so called pseudo-dimension 1 mean field model, we study several optimization problems, of which the traveling salesman is the best known. We prove that, as n→∞, the cost of the minimum traveling salesman tour converges in probability to a certain number, approximately 2.0415, which is characterized analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achlioptas, D., Naor, A. & Peres, Y., Rigorous location of phase transitions in hard optimization problems. Nature, 435 (2005), 759–764.

    Article  Google Scholar 

  2. Achlioptas, D. & Peres, Y., The threshold for random k-SAT is 2k log 2−O(k). J. Amer. Math. Soc., 17 (2004), 947–973.

    Article  MATH  MathSciNet  Google Scholar 

  3. Aldous, D., Asymptotics in the random assignment problem. Probab. Theory Related Fields, 93 (1992), 507–534.

    Article  MATH  MathSciNet  Google Scholar 

  4. _____ The ζ(2) limit in the random assignment problem. Random Structures Algorithms, 18 (2001), 381–418.

    Article  MATH  MathSciNet  Google Scholar 

  5. _____ Percolation-like scaling exponents for minimal paths and trees in the stochastic mean field model. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 825–838.

    Article  MATH  MathSciNet  Google Scholar 

  6. Aldous, D. & Bandyopadhyay, A., A survey of max-type recursive distributional equations. Ann. Appl. Probab., 15 (2005), 1047–1110.

    Article  MATH  MathSciNet  Google Scholar 

  7. Aldous, D. & Percus, A. G., Scaling and universality in continuous length combinatorial optimization. Proc. Natl. Acad. Sci. USA, 100:20 (2003), 11211–11215.

  8. Aldous, D. & Steele, J. M., The objective method: probabilistic combinatorial optimization and local weak convergence, in Probability on Discrete Structures, Encyclopaedia Math. Sci., 110, pp. 1–72. Springer, Berlin–Heidelberg, 2004.

  9. Alm, S.E. & Sorkin, G. B., Exact expectations and distributions for the random assignment problem. Combin. Probab. Comput., 11 (2002), 217–248.

    MATH  MathSciNet  Google Scholar 

  10. Bacci, S. & Miranda, E. N., The traveling salesman problem and its analogy with two-dimensional spin glasses. J. Stat. Phys., 56 (1989), 547–551.

    Article  MathSciNet  Google Scholar 

  11. Bandyopadhyay, A. & Gamarnik, D., Counting without sampling: asymptotics of the log-partition function for certain statistical physics models. Random Structures Algorithms, 33 (2008), 452–479.

    Article  MATH  MathSciNet  Google Scholar 

  12. Boettcher, S. & Percus, A., Nature’s way of optimizing. Artificial Intelligence, 119 (2000), 275–286.

    Article  MATH  Google Scholar 

  13. Brunetti, R., Krauth, W., Mézard, M. & Parisi, G., Extensive numerical simulation of weighted matchings: total length and distribution of links in the optimal solution. Europhys. Lett., 14 (1991), 295–301.

    Article  Google Scholar 

  14. Buck, M. W., Chan, C. S. & Robbins, D. P., On the expected value of the minimum assignment. Random Structures Algorithms, 21 (2002), 33–58.

    Article  MATH  MathSciNet  Google Scholar 

  15. Cerf, N. J., Boutet de Monvel, J., Bohigas, O., Martin, O. C. & Percus, A. G., The random link approximation for the Euclidean traveling salesman problem. J. Physique, 7 (1997), 117–136.

    Article  Google Scholar 

  16. Coppersmith, D. & Sorkin, G. B., Constructive bounds and exact expectations for the random assignment problem. Random Structures Algorithms, 15 (1999), 113–144.

    Article  MATH  MathSciNet  Google Scholar 

  17. Frieze, A., On the value of a random minimum spanning tree problem. Discrete Appl. Math., 10 (1985), 47–56.

    Article  MATH  MathSciNet  Google Scholar 

  18. _____ On random symmetric travelling salesman problems. Math. Oper. Res., 29 (2004), 878–890.

    Article  MATH  MathSciNet  Google Scholar 

  19. Guerra, F., Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys., 233 (2003), 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  20. van der Hofstad, R., Hooghiemstra, G. & Van Mieghem, P., The weight of the shortest path tree. Random Structures Algorithms, 30 (2007), 359–379.

    Article  MATH  MathSciNet  Google Scholar 

  21. Karp, R. M., An upper bound on the expected cost of an optimal assignment, in Discrete Algorithms and Complexity (Kyoto, 1986), Perspect. Comput., 15, pp. 1–4. Academic Press, Boston, MA, 1987.

    Google Scholar 

  22. Kirkpatrick, S. & Toulouse, G., Configuration space analysis of travelling salesman problems. J. Physique, 46:8 (1985), 1277–1292.

    Article  MathSciNet  Google Scholar 

  23. Krauth, W. & Mézard, M., The cavity method and the travelling salesman problem. Europhys. Lett., 8 (1989), 213–218.

    Article  Google Scholar 

  24. Linusson, S. & Wästlund, J., A proof of Parisi’s conjecture on the random assignment problem. Probab. Theory Related Fields, 128 (2004), 419–440.

    Article  MATH  MathSciNet  Google Scholar 

  25. Mézard, M. & Montanari, A., Information, Physics, and Computation. Oxford Graduate Texts. Oxford University Press, Oxford, 2009.

    Google Scholar 

  26. Mézard, M. & Parisi, G., Replicas and optimization. J. Physique, 46 (1985), 771–778.

    Google Scholar 

  27. _____ Mean-field equations for the matching and the travelling salesman problems. Europhys. Lett., 2 (1986), 913–918.

    Article  Google Scholar 

  28. _____ A replica analysis of the travelling salesman problem. J. Physique, 47 (1986), 1285–1296.

    Article  Google Scholar 

  29. _____ On the solution of the random link matching problems. J. Physique, 48 (1987), 1451–1459.

    Article  Google Scholar 

  30. Mézard, M., Parisi, G. & Virasoro, M. A., Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics, 9. World Scientific, Teaneck, NJ, 1987.

  31. Mézard, M., Parisi, G. & Zecchina, R., Analytic and algorithmic solutions of random satisfiability problems. Science, 297 (2002), 812.

    Article  Google Scholar 

  32. Nair, C., Proofs of the Parisi and Coppersmith–Sorkin Conjectures in the Finite Random Assignment Problem. Ph.D. Thesis, Stanford University, Stanford, CA, 2005.

  33. Nair, C., Prabhakar, B. & Sharma, M., Proofs of the Parisi and Coppersmith–Sorkin random assignment conjectures. Random Structures Algorithms, 27 (2005), 413–444.

    Article  MATH  MathSciNet  Google Scholar 

  34. Parisi, G., A sequence of approximated solutions to the S–K model for spin glasses. J. Physique, 13 (1980), L–115.

    Google Scholar 

  35. _____ Spin glasses and optimization problems without replicas, in Le hasard et la matière (Les Houches, 1986), pp. 525–552. North-Holland, Amsterdam, 1987.

  36. _____ A conjecture on random bipartite matching. Preprint, 1998. arXiv:cond-mat/9801176.

  37. Percus, A. G., Voyageur de commerce et problèmes stochastiques associés. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, 1997.

  38. Percus, A. G. & Martin, O. C., Finite size and dimensional dependence in the Euclidean traveling salesman problem. Phys. Rev. Lett., 76 (1996), 1188–1191.

    Article  MATH  MathSciNet  Google Scholar 

  39. _____ The stochastic traveling salesman problem: Finite size scaling and the cavity prediction. J. Stat. Phys., 94 (1999), 739–758.

    Article  MATH  MathSciNet  Google Scholar 

  40. Sherrington, D. & Kirkpatrick, S., Solvable model of a spin glass. Phys. Rev. Lett., 35 (1975), 1792–1796.

    Article  Google Scholar 

  41. Sourlas, N., Statistical mechanics and the travelling salesman problem. Europhys. Lett., 2 (1986), 919–923.

    Article  Google Scholar 

  42. Talagrand, M., Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math., 81 (1995), 73–205.

    Article  MATH  MathSciNet  Google Scholar 

  43. ____ Spin Glasses: A Challenge for Mathematicians. Modern Surveys in Mathematics, 46. Springer, Berlin–Heidelberg, 2003.

  44. ____ The Parisi formula. Ann. of Math., 163 (2006), 221–263.

    Article  MATH  MathSciNet  Google Scholar 

  45. Vannimenus, J. & Mézard, M., On the statistical mechanics of optimization problems of the travelling salesman type. J. Physique, 45 (1984), 1145–1153.

    Article  Google Scholar 

  46. Walkup, D. W., On the expected value of a random assignment problem. SIAM J. Comput., 8 (1979), 440–442.

    Article  MATH  MathSciNet  Google Scholar 

  47. Wästlund, J., A proof of a conjecture of Buck, Chan, and Robbins on the expected value of the minimum assignment. Random Structures Algorithms, 26 (2005), 237–251.

    Article  MATH  MathSciNet  Google Scholar 

  48. _____ The variance and higher moments in the random assignment problem. Linköping Studies in Mathematics, 8. Preprint, 2005.

  49. Weitz, D., Counting independent sets up to the tree threshold, in Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 140–149. ACM, New York, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Wästlund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wästlund, J. The mean field traveling salesman and related problems. Acta Math 204, 91–150 (2010). https://doi.org/10.1007/s11511-010-0046-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-010-0046-7

Mathematics Subject Classifications (2000)

Navigation