Skip to main content
Log in

Primes in tuples II

  • Published:
Acta Mathematica

Abstract

We prove that

$$ \mathop{ \lim \inf}\limits_{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\sqrt{\log p_{n}} \left(\log \log p_{n}\right)^{2}}< \infty, $$

where p n denotes the nth prime. Since on average p n+1p n is asymptotically log n , this shows that we can always find pairs of primes much closer together than the average. We actually prove a more general result concerning the set of values taken on by the differences pp′ between primes which includes the small gap result above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bombieri, E. & Davenport, H., Small differences between prime numbers. Proc. Roy. Soc. Ser. A, 293 (1966), 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  2. Davenport, H., Multiplicative Number Theory. Graduate Texts in Mathematics, 74. Springer, New York, 2000.

    Google Scholar 

  3. Elliott, P. D. T. A. & Halberstam, H., A conjecture in prime number theory, in Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), pp. 59–72. Academic Press, London, 1970.

    Google Scholar 

  4. Erdős, P., The difference of consecutive primes. Duke Math. J., 6 (1940), 438–441.

    Article  MathSciNet  Google Scholar 

  5. Gallagher, P. X., On the distribution of primes in short intervals. Mathematika, 23 (1976), 4–9.

    MATH  MathSciNet  Google Scholar 

  6. Goldfeld, D. M. & Schinzel, A., On Siegel’s zero. Ann. Sc. Norm. Super. Pisa Cl. Sci., 2 (1975), 571–583.

    MATH  MathSciNet  Google Scholar 

  7. Goldston, D. A., Pintz, J. & Yıldırım, C. Y., Primes in tuples I. Ann. of Math., 170 (2009), 819–862.

    MATH  MathSciNet  Google Scholar 

  8. Halberstam, H. & Richert, H. E., Sieve Methods. London Math. Soc. Monogr. Ser., 4. Academic Press, London–New York, 1974.

    Google Scholar 

  9. Hardy, G. H. & Littlewood, J. E., Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes. Acta Math., 44 (1923), 1–70.

    Article  MathSciNet  Google Scholar 

  10. Heath-Brown, D. R., Prime twins and Siegel zeros. Proc. Lond. Math. Soc., 47 (1983), 193–224.

    Article  MATH  MathSciNet  Google Scholar 

  11. _____ Almost-prime k-tuples. Mathematika, 44 (1997), 245–266.

    Article  MathSciNet  Google Scholar 

  12. Ivić, A., The Riemann zeta-function. John Wiley, New York, 1985.

    MATH  Google Scholar 

  13. Maier, H., Small differences between prime numbers. Michigan Math. J., 35 (1988), 323–344.

    Article  MATH  MathSciNet  Google Scholar 

  14. Montgomery, H. L., Topics in Multiplicative Number Theory. Lecture Notes in Mathematics, 227. Springer, Berlin–Heidelberg, 1971.

  15. Pintz, J., Elementary methods in the theory of L-functions. II. On the greatest real zero of a real L-function. Acta Arith., 31 (1976), 273–289.

    MATH  MathSciNet  Google Scholar 

  16. _____ Elementary methods in the theory of L-functions. VIII. Real zeros of real L-functions. Acta Arith., 33 (1977), 89–98.

    MATH  MathSciNet  Google Scholar 

  17. _____ Very large gaps between consecutive primes. J. Number Theory, 63 (1997), 286–301.

    Article  MATH  MathSciNet  Google Scholar 

  18. _____ Approximations to the Goldbach and twin prime problem and gaps between consecutive primes, in Probability and Number Theory (Kanazawa, 2005), Adv. Stud. Pure Math., 49, pp. 323–365. Math. Soc. Japan, Tokyo, 2007.

  19. de Polignac, A., Six propositions arithmologiques d´eduites du crible d’Ératosthène. Nouv. Ann. Math., 8 (1849), 423–429.

    Google Scholar 

  20. Titchmarsh, E. C., The Theory of the Riemann Zeta-Function. Oxford University Press, New York, 1986.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Goldston.

Additional information

The first author was supported in part by an NSF Grant, the second author by OTKA grants No. K 67676, T 43623, T 49693 and the Balaton program, the third author by TÜBITAK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldston, D.A., Pintz, J. & Yalçin Yıldırım, C. Primes in tuples II. Acta Math 204, 1–47 (2010). https://doi.org/10.1007/s11511-010-0044-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-010-0044-9

Keywords

Navigation