Skip to main content
Log in

Lutein-Loaded Emulsions Stabilized by Egg White Protein-Dextran-Catechin Conjugates: Cytotoxicity, Stability, and Bioaccessibility

  • Research
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the cytotoxicity, physicochemical stability, and bioaccessibility of lutein-loaded emulsions stabilized by egg white protein-dextran-catechin (EWP-Dex-EC) conjugates. The conjugates were developed using a two-step method involving free radical grafting combined with the Maillard reaction. Cytotoxicity analysis indicated that the conjugates were nontoxic and biocompatible. Changes in particle size, ζ-potential and lutein retention of the emulsions were determined to evaluate their physicochemical stability. Grafting dextran to the egg white protein improve the physical stability of the emulsions, which was attributed to an increase in steric repulsion between the protein-coated oil droplets. The attachment of catechin to the egg white proteins increased their interfacial antioxidant activity, which inhibited lutein degradation in the emulsions. The highest bioaccessibility of lutein was observed in the EWP-Dex-EC conjugate-stabilized emulsions, which was mainly attributed to the relatively smaller droplet size and stronger antioxidant activity. Our results suggest that the protein-polysaccharide-polyphenol conjugates formed in this study could be used as antioxidant emulsifiers to improve the physicochemical stability and bioavailability of lipophilic bioactives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Mine, Worlds Poult. Sci. J. 58 (1), 31–39 (2002).

  2. M. Zhang, J. Li, Y. Su, C. Chang, X. Li, Y. Yang, L. Gu, Food Hydrocoll. 97, 105191 (2019).

  3. Y. Wang, L. Zhang, P. Wang, X. Xu, G. Zhou, Food Res. Int. 137, 109366 (2020).

  4. C. Arzeni, A. M. R. Pilosof, LWT 111, 470–477 (2019).

  5. L. Gu, Y. Su, M. Zhang, C. Chang, J. Li, D. J. McClements, Y. Yang, Food Res. Int. 96, 84–93 (2017).

  6. D. J. McClements, E. Decker, J. Agric. Food Chem. 66 (1), 20–35 (2018).

  7. J. Sun, H. Jing, Y. Mu, D. J. McClements, S. Dong, B. Xu, Food Hydrocoll. 108, 106019 (2020).

  8. J. You, Y. Luo, J. Wu, J. Agric. Food Chem. 62 (12), 2581–2587 (2014).

  9. L. Gu, C. Pan, Y. Su, R. Zhang, H. Xiao, D. J. McClements, Y. Yang, J. Agric. Food Chem. 66 (7), 1649–1657 (2018).

  10. J. Wang, Y. Zhao, S. Niu, X. Wang, F. Chen, Int. J. Food Sci. Technol. 53 (10), 2282–2289 (2018).

  11. S. V. Prigent, A. G. Voragen, A. J. Visser, G. A. Koningsveld, H. Gruppen, J. Sci. Food Agric. 87 (13), 2502–2510 (2007).

  12. G. M. Soliman, Y. L. Zhang, G. Merle, M. Cerruti, J. Barralet, Eur. J. Pharm. Biopharm. 88 (3), 1026–1037 (2014).

  13. Y.-S. Cho, S.-K. Kim, C.-B. Ahn, J.-Y. Je, Carbohydr. Polym. 84 (1), 690–693 (2011).

  14. Y. Zheng, Z. Li, Z. Lu, F. Wu, G. Fu, B. Zheng, Y. Tian, LWT 160, 113309 (2022).

  15. Z. Li, Y. Zheng, Q. Sun, J. Wang, B. Zheng, Z. Guo, Ultrason. Sonochem. 72, 105458 (2021).

  16. B. Zhang, X. Guo, K. Zhu, W. Peng, H. Zhou, Carbohydr. Polym. 127, 168–175 (2015).

  17. Y. Cheng, W. Tang, Z. Xu, L. Wen, M. Chen, Int. J. Food Sci. Technol. 53 (2), 372–380 (2018).

  18. O. Vittorio, G. Cirillo, F. Iemma, G. D. Turi, E. Jacchetti, M. Curcio, S. Barbuti, N. Funel, O. I. Parisi, F. Puoci, N. Picci, Pharm. Res. 29 (9), 2601–2614 (2012).

  19. Q. Hu, Y. Wu, L. Zhong, N. Ma, L. Zhao, G. Ma, N. Cheng, P. A. Nakata, J. Xu, Food Hydrocoll. 112, 106340 (2021).

  20. L. Xu, J. Wang, Y. Su, C. Chang, L. Gu, Y. Yang, J. Li, LWT 142, 111024 (2021).

  21. Y. Yan, Q. Zhu, C. Diao, J. Wang, Z. Wu, H. Wang, Food Hydrocoll. 101, 105447 (2020).

  22. B. Zheng, S. Peng, X. Zhang, D. J. McClements,J. Agric. Food Chem. 66 (41), 10816–10826 (2018).

  23. V. Somoza, Mol. Nutr. Food Res. 49 (7), 663–672 (2005).

  24. J. Yi, T. I. Lam, W. Yokoyama, L. W. Cheng, F. Zhong, J. Agric. Food Chem. 62 (5), 1096–1104 (2014).

  25. J. Yi, T. I. Lam, W. Yokoyama, L. W. Cheng, F. Zhong, J. Agric. Food Chem. 62 (35), 8900–8907 (2014).

  26. G. Sun, S. Zhang, Y. Xie, Z. Zhang, W. Zhao, Oncol. Lett. 11 (1), 150–158 (2016).

  27. H. Li, Q. Chen, J. Zhao, K. Urmila, Sci. Rep. 5 (1), 11033 (2015).

  28. L. Gu, Y. Su, Z. Zhang, B. Zheng, R. Zhang, D. J. McClements, Y. Yang, J. Agric. Food Chem. 65 (32), 6919–6928 (2017).

  29. C. Thongkaew, M. Gibis, J. Hinrichs, J. Weiss, Food Hydrocoll. 41, 103–112 (2014).

  30. C. Wang, Z. Liu, G. Xu, B. Yin, P. Yao, Food Hydrocoll. 61, 11–19 (2016).

  31. F. Liu, C. Ma, Y. Gao, D. J. McClements, Compr. Rev. Food Sci. Food Saf. 16 (1), 76–95 (2017).

  32. J. Feng, H. Cai, H. Wang, C. Li, S. Liu, Food Chem. 241, 60–69 (2018).

  33. Z. Wei, W. Yang, R. Fan, F. Yuan, Y. Gao, Food Hydrocoll. 45, 337–350 (2015).

  34. H. Wang, Y. Yan, X. Feng, Z. Wu, Y. Guo, H. Li, Q. Zhu, J. Food Sci. 85 (10), 3323–3332 (2020).

  35. I. J. Joye, D. J. McClements, Curr. Top. Med. Chem. 16 (9), 1026–1039 (2016).

  36. C. E. Gumus, G. Davidov-Pardo, D. J. McClements, Food Hydrocoll. 60, 38–49 (2016).

  37. A. Vandemoortele, B. De Meulenaer, J. Agric. Food Chem. 63 (23), 5694–5701 (2015).

  38. M. Xu, Z. Lian, X. Chen, X. Yao, C. Lu, X. Niu, M. Xu, Q. Zhu, Food Chem. 365, 130525 (2021).

  39. C. Jacobsen, Eur. J. Lipid Sci. Technol. 117 (11), 1853–1866 (2015).

  40. A. Sarkar, K. K. T. Goh, R. P. Singh, H. Singh, Food Hydrocoll. 23 (6), 1563–1569 (2009).

  41. R. Zhang, Z. Zhang, H. Zhang, E. A. Decker, D. J. McClements, Food Res. Int. 75, 71–78 (2015).

  42. S. Mun, E. A. Decker, D. J. McClements, Langmuir 21 (14), 6228–6234 (2005).

  43. S. Mun, E. A. Decker, D. J. McClements, Food Res. Int. 40 (6), 770–781 (2007).

Download references

Funding

The work was supported by the National Natural Science Foundation for the Youth of China (No. 31901642).

Author information

Authors and Affiliations

Authors

Contributions

Luping Gu: Conceptualization, Writing- Original draft preparation; Xing Yao: Methodology, Formal analysis; David Julian McClements: Editing; Li Liang: Data curation; Wen Xiong: Investigation; Junhua Li: Software; Cuihua Chang: Visualization; Yujie Su: Project administration; Yanjun Yang: Supervision.

Corresponding authors

Correspondence to Yujie Su or Yanjun Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Yao, X., McClements, D.J. et al. Lutein-Loaded Emulsions Stabilized by Egg White Protein-Dextran-Catechin Conjugates: Cytotoxicity, Stability, and Bioaccessibility. Food Biophysics 18, 175–185 (2023). https://doi.org/10.1007/s11483-022-09762-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-022-09762-7

Keywords

Navigation