Skip to main content
Log in

Characterization of Acid- and Pepsin-Soluble Collagens from the Cuticle of Perinereis nuntia (Savigny)

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

To extend the practical applications of collagen, alternatives to mammalian sources are needed. In this study, acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were extracted from the cuticle of Perinereis nuntia (Savigny), and their physicochemical features and structures were examined. The yields of ASC and PSC were 3.89% and 6.74%, respectively. The glycine contents of both collagens accounted for approximately one-third of the total amino acid residues, and the sum totals of proline and hydroxyproline in ASC and PSC were 212 and 214 residues/1000 residues, respectively. However, the proline hydroxylation rates of ASC and PSC were 84.0% and 83.6%, respectively. The maximum absorption peaks of both ASC and PSC were detected at 233 nm. Zeta potential studies indicated that ASC and PSC have a net zero charge at pH 4.89 and 4.95, respectively. Fourier-transform infrared spectroscopy, circular dichroism, and X-ray diffraction confirmed the triple helical structure of the collagen. The denaturation temperatures (Td) of ASC and PSC were 36.5 °C and 33 °C, respectively. Moreover, the collagens appeared to be loose, fibrous, and porous by scanning electron microscopy. These results suggested that collagen from the cuticle of Perinereis nuntia (Savigny) has potential commercial applications in the food, nutraceutical, and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Ogawa, M.W. Moody, R.J. Portier, J. Bell, M.A. Schexnayder, J.N. Losso, J. Agric. Food Chem. 51(27), 8088–8092 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. D.S. Liu, L. Liang, J.M. Regenstein, P. Zhou, Food Chem. 133(4), 1441–1448 (2012)

    Article  CAS  Google Scholar 

  3. M.D. Shoulders, R.T. Raines, Annu. Rev. Biochem. 78(78), 929–958 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M.C.D. Moraes, R.L. Cunha, Food Res. Int. 50(1), 213–223 (2013)

    Article  CAS  Google Scholar 

  5. A. Jongjareonrak, S. Benjakul, W. Visessanguan, T. Nagai, M. Tanaka, Food Chem. 93(3), 475–484 (2005)

    Article  CAS  Google Scholar 

  6. M.C. Gómez-Guillén, B. Giménez, M.E. López-Caballero, M.P. Montero, Food Hydrocoll. 25(8), 1813–1827 (2011)

    Article  CAS  Google Scholar 

  7. P. Kittiphattanabawon, S. Benjakul, W. Visessanguan, F. Shahidi, Eur. Food Res. Technol. 230(3), 475–483 (2010)

    Article  CAS  Google Scholar 

  8. H.S. Jeong, J. Venkatesan, S.K. Kim, Biotechnol. Bioprocess Eng. 18(6), 1185–1191 (2013)

    Article  CAS  Google Scholar 

  9. E. Jeevithan, W.H. Wu, N.P. Wang, L. He, B. Bao, Process Biochem. 49(10), 1767–1777 (2014)

  10. N. Adibzadeh, S. Aminzadeh, S. Jamili, A.A. Karkhane, N. Farrokhi, Appl. Biochem. Biotechnol. 173(1), 143–154 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. S. Addad, J.Y. Exposito, C. Faye, S. Ricard-Blum, C. Lethias, Mar. Drugs. 9(6), 967–983 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Kimura, M.L. Tanzer, Biochemist 16(11), 2554–2560 (1977)

    Article  CAS  Google Scholar 

  13. J.F. Woessner Jr, Arch. Biochem. Biophys. 93(2), 440–447 (1961)

    Article  CAS  Google Scholar 

  14. S. Nalinanon, S. Benjakul, H. Kishimura, K. Osako, Food Chem. 125(2), 500–507 (2011)

    Article  CAS  Google Scholar 

  15. P. Kittiphattanabawon, S. Benjakul, W. Visessanguan, T. Nagai, M. Tanaka, Food Chem. 89(3), 363–372 (2005)

    Article  CAS  Google Scholar 

  16. U.K. Laemmli, Nature 227(5259), 680–685 (1970)

    Article  CAS  Google Scholar 

  17. S. Tamilmozhi, A. Veeruraj, M. Arumugam, Food Res. Int. 54(2), 1499–1505 (2013)

    Article  CAS  Google Scholar 

  18. Z.Y. Liu, A.C.M. Oliveira, Y.C. Su, J. Agric. Food Chem. 58(2), 1270–1274 (2009)

  19. H.Y. Liu, D. Li, S.D. Guo, Food Chem. 101(2), 621–625 (2007)

    Article  CAS  Google Scholar 

  20. Y. Zhang, W.T. Liu, G.Y. Li, B. Shi, Y.Q. Miao, X.H. Wu, Food Chem. 103(3), 906–912 (2007)

  21. E. Jeevithan, J.Y. Zhang, N.P. Wang, L. He, B. Bao, W.H. Wu, Process Biochem. 50(3), 463–472 (2015)

  22. Z.R. Li, B. Wang, C.F. Chi, Q.H. Zhang, Y.D. Gong, J.J. Tang, H.Y. Luo, G.F. Ding, Food Hydrocoll. 31(1), 103–113 (2013)

    Article  CAS  Google Scholar 

  23. L.L. Sun, H. Hou, B.F. Li, Y. Zhang, Int. J. Biol. Macromol. 99, 8–14 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. J.D. Chen, L. Li, R.Z. Yi, N.H. Xu, R. Gao, B.H. Hong, LWT-Food Sci. Technol. 66, 453–459 (2016)

    Article  CAS  Google Scholar 

  25. T. Nagai, E. Yamashita, K. Taniguchi, N. Kanamori, N. Suzuki, Food Chem. 72(4), 425–429 (2001)

    Article  CAS  Google Scholar 

  26. M. Gauzawłodarczyk, L. Kubisz, D. Włodarczyk, Int. J. Biol. Macromol. 104(Pt A), 987–991 (2017)

    Article  CAS  Google Scholar 

  27. A. Veeruraj, M. Arumugam, T. Balasubramanian, Process Biochem. 48(10), 1592–1602 (2013)

    Article  CAS  Google Scholar 

  28. Y.K. Lin, D.C. Liu, Food Chem. 99(2), 244–251 (2006)

    Article  CAS  Google Scholar 

  29. Y. Li, A. Asadi, M.R. Monroe, E.P. Douglas, Mater. Sci. Eng. C-Mater. Biol. Appl. 29(5), 1643–1649 (2009)

    Article  CAS  Google Scholar 

  30. P. Singh, S. Benjakul, S. Maqsood, H. Kishimura, Food Chem. 124(1), 97–105 (2011)

    Article  CAS  Google Scholar 

  31. K. Phanat, B. Soottawat, V. Wonnop, K. Hideki, S. Fereidoon, Food Chem. 119(1), 1519–1526 (2010)

    Google Scholar 

  32. B.W. Zhu, X.P. Dong, D.Y. Zhou, Y. Gao, J.F. Yang, D.M. Li, X.K. Zhao, T.T. Ren, W.X. Ye, H. Tan, Food Hydrocoll. 28(1), 182–188 (2012)

    Article  CAS  Google Scholar 

  33. S. Nalinanon, S. Benjakul, H. Kishimura, Food Chem. 121(1), 49–55 (2010)

    Article  CAS  Google Scholar 

  34. C.S. Li, H. Yang, Food Hydrocoll. 45, 72–82 (2015)

    Article  CAS  Google Scholar 

  35. J.H. Muyonga, C.G.B. Cole, K.G. Duodu, Food Chem. 86(3), 325–332 (2004)

    Article  CAS  Google Scholar 

  36. L. Wang, X. An, Z. Xin, L. Zhao, Q. Hu, J. Food Sci. 72(8), E450–E455 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. M. Ahmad, S. Benjakul, S. Nalinanon, Food Hydrocoll. 24(6–7), 588–594 (2010)

    Article  CAS  Google Scholar 

  38. J. Wang, X. Pei, H. Liu, D. Zhou, Int. J. Biol. Macromol. 106, 544–550 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. D.S. Liu, P. Zhou, T.C. Li, J.M. Regenstein, Food Hydrocoll. 41, 290–297 (2014)

    Article  CAS  Google Scholar 

  40. M. Yousefi, F. Ariffin, N. Huda, Food Hydrocoll. 63, 372–382 (2017)

    Article  CAS  Google Scholar 

  41. H.Y. Liu, J. Han, S.D. Guo, LWT-Food Sci. Technol. 42(2), 540–544 (2009)

    Article  CAS  Google Scholar 

  42. H. Yang, H. Wang, Y. Zhao, H. Wang, H. Zhang, J. Sci. Food Agric. 95(2), 329–336 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. C. Mu, D. Li, W. Lin, Y. Ding, G. Zhang, Biopolymers 86(4), 282–287 (2007)

    Article  CAS  PubMed  Google Scholar 

  44. F.X. Zhang, A.N. Wang, Z.H. Li, S.W. He, L.J. Shao, Food Nutr. Sci. 2(8), 1810–1817 (2011)

    Google Scholar 

  45. G.J. Cameron, D.E. Cairns, T.J. Wess, J. Mol. Biol. 372(4), 1097–1107 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. C.Z. Wang, C. Zhong, H. Ying, L.Y. Li, Z. Dong, Appl. Surf. Sci. 255(15), 6881–6887 (2009)

    Article  CAS  Google Scholar 

  47. F.X. Cui, C.H. Xue, Z.J. Li, Y.Q. Zhang, P. Dong, X.Y. Fu, X. Gao, Food Chem. 100(3), 1120–1125 (2007)

  48. T. Staicu, V. Cîrcu, G. Ioniţă, C. Ghica, V.T. Popa, M. Micutz, RSC Adv. 5(48), 38391–38406 (2015)

    Article  CAS  Google Scholar 

  49. T. Nagai, N. Suzuki, Food Chem. 76(2), 149–153 (2002)

    Article  CAS  Google Scholar 

  50. J. Engel, H.P. Bächinger, Top. Curr. Chem. 247, 7–33 (2005)

    Article  CAS  Google Scholar 

  51. M.Y. Yan, B.F. Li, X. Zhao, G.Y. Ren, Y.L. Zhuang, H. Hou, X.K. Zhang, L. Chen, Y. Fan, Food Chem. 107(4), 1581–1586 (2008)

    Article  CAS  Google Scholar 

  52. T.K.H. Ikoma, J. Tanaka, D. Walsh, S. Mann, Int. J. Biol. Macromol. 32(3–5), 199–204 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (No. 31272705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Zhang, Z., Hou, H. et al. Characterization of Acid- and Pepsin-Soluble Collagens from the Cuticle of Perinereis nuntia (Savigny). Food Biophysics 13, 274–283 (2018). https://doi.org/10.1007/s11483-018-9533-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-018-9533-8

Keywords

Navigation