Skip to main content
Log in

Cold-Set Gelation of Commercial Soy Protein Isolate: Effects of the Incorporation of Locust Bean Gum and Solid Lipid Microparticles on the Properties of Gels

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the ability of commercial soy protein isolate (SPI) to form cold-set gels under different pHs (5–11), pre-heating temperatures (60 °C, 80 °C), CaCl2 (0–15 mM) and SPI (5–15%, w/v) concentrations, and also select a formulation for the investigation of the effects of incorporating locust bean gum (LBG) (0–0.3%, w/v) and solid lipid microparticles (SLM) on gels rheological and microstructural properties. Gels were evaluated in terms of visual aspect, water-holding capacity, microstructure (using confocal laser scanning microscopy and cryo-scanning electronic microscopy) and rheological properties. SPI showed higher solubilities at pHs 7 (32.0%), 9 (51.6%) and 11 (100%). Self-supported gels were obtained under several conditions at alkaline pHs. At pH 7, only systems pre-heated to 80 °C with 15% (w/v) SPI and 10 or 15 mM CaCl2 gave self-supported gels. At neutral pH, samples showed relative structural instability, which was minimized with LBG incorporation. Formulations GSPI (pH 7, preheated to 80 °C, 15% (w/v) SPI, 10 mM CaCl2) and GMIX (pH 7, preheated to 80 °C, 15% (w/v) SPI, 0.2% (w/v) LBG, 15 mM CaCl2) were selected for emulsion-filled gels (EFG) production. Power law parameters (K′, K″), calculated from frequency sweep results, revealed that non-filled GMIX (K′: 472.1; K″: 77.6) was stronger than GSPI (K′: 170.4; K″: 33.6). Besides, GMIX showed microphase separation. SLM stabilized with Tween 80-Span 80 were active fillers in EFG, altering microstructures and increasing G’, G” and the Young’s modulus (1.8 to 2.1 kPa for GSPI and 1.4 to 2.2 kPa for GMIX).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Nishinari, Y. Fang, S. Guo, G.O. Phillips, Food Hydrocoll. 39, 301–318 (2014)

    Article  CAS  Google Scholar 

  2. A. Maltais, G.E. Remondetto, M. Subirade, Food Hydrocoll. 22(4), 550–559 (2008)

    Article  CAS  Google Scholar 

  3. J.A.P. Vilela, A.L.F. Cavallieri, R.L. Cunha, Food Hydrocoll. 25(7), 1710–1718 (2011)

    Article  CAS  Google Scholar 

  4. A.C. Alting, H.H.J. de Jongh, R.W. Visschers, J.F.A. Simons, J. Agric. Food Chem. 50(16), 4682–4689 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. C. Rocha, J.A. Teixeira, L. Hilliou, P. Sampaio, M.P. Gonçalves, Food Hydrocoll. 23(7), 1734–1745 (2009)

    Article  CAS  Google Scholar 

  6. A.L.F. Cavallieri, R.L. Cunha, Food Biophys. 4(2), 94–105 (2009)

    Article  Google Scholar 

  7. A.C. Alting, R.J. Hamer, C.G. de Kruif, M. Paques, R.W. Visschers, Food Hydrocoll. 17(4), 469–479 (2003)

    Article  CAS  Google Scholar 

  8. Y. Chang, D. Li, L. Wang, C. Bi, B. Adhikari, Carbohydr. Polym. 108, 183–191 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. M.C. Puppo, D.A. Sorgentini, M.C. Añón, J. Am. Oil Chem. Soc 80(6), 605–611 (2003)

    Article  CAS  Google Scholar 

  10. C. Tang, X. Wang, X. Yang, L. Li, J. Food. Eng 92, 432–437 (2009)

    Article  CAS  Google Scholar 

  11. K.R. Kuhn, A.L.F. Cavallieri, R.L. Cunha, Food Hydrocoll. 25(5), 1302–1310 (2011)

    Article  CAS  Google Scholar 

  12. M. Bertrand, S.L. Turgeon, Food Hydrocoll. 21(2), 159–166 (2007)

    Article  CAS  Google Scholar 

  13. V.J. Morris, Curr. Opin. Colloid Interface Sci. 2(6), 567–572 (1997)

    Article  CAS  Google Scholar 

  14. S. Jong, F. Van De Velde, Food Hydrocoll. 21(7), 1172–1187 (2007)

    Article  CAS  Google Scholar 

  15. S. Jong, H. Jan Klok, F. Van De Velde, Food Hydrocoll. 23(3), 755–764 (2009)

    Article  CAS  Google Scholar 

  16. S.R. Monteiro, S. Rebelo, O.A.B.C. Silva, J.A. Lopes-da-Silva, Food Hydrocoll. 33(2), 349–360 (2013)

    Article  CAS  Google Scholar 

  17. C. Bi, D. Li, L. Wang, B. Adhikari, LWT - Food Sci. Technol. 75, 1–8 (2007)

    Article  CAS  Google Scholar 

  18. S. Barak, D. Mudgil, Int. J. Biol. Macromol. 66, 74–80 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. D.E. Dunstan, Y. Chen, M.-L. Liao, R. Salvatore, D.V. Boger, M. Prica, Food Hydrocoll. 15(4–6), 475–484 (2001)

    Article  CAS  Google Scholar 

  20. C. Sandolo, D. Bulone, M.R. Mangione, S. Margheritelli, C.D. Meo, F. Alhaique, P. Matricardi, T. Coviello, Carbohydr. Polym. 82(3), 733–741 (2010)

    Article  CAS  Google Scholar 

  21. G. Lorenzo, N. Zaritzky, A. Califano, Food Hydrocoll. 30(2), 672–680 (2013)

    Article  CAS  Google Scholar 

  22. K. Liu, M. Stieger, E. van der Linden, F. van de Velde, Food Hydrocoll. 44, 244–259 (2015)

    Article  CAS  Google Scholar 

  23. L. Oliver, E. Scholten, G.A. van Aken, Food Hydrocoll. 43, 299–310 (2015)

    Article  CAS  Google Scholar 

  24. G. Sala, G.A. van Aken, M.A.C. Stuart, F. van de Velde, J. Texture Stud. 38(4), 511–535 (2007)

    Article  Google Scholar 

  25. G. Sala, T. van Vliet, M.A.C. Stuart, G.A. van Aken, F. van de Velde, Food Hydrocoll. 23, 1853–1863 (2009)

    Article  CAS  Google Scholar 

  26. G. Sala, T. van Vliet, M.A.C. Stuart, G.A. van Aken, F. van de Velde, Food Hydrocoll. 23(5), 1381–1393 (2009)

    Article  CAS  Google Scholar 

  27. R. Davies, D.E. Graham, B. Vincent, J. Colloid Interface Sci. 116(1), 88–89 (1987)

    Article  CAS  Google Scholar 

  28. C.V. Morr, B. German, J.E. Kinsella, J.M. Regenstein, J.P. Van Buren, A. Kilara, B.A. Lewis, M.E. Mangino, J. Food Sci. 50(6), 1715–1718 (1985)

    Article  CAS  Google Scholar 

  29. T.C. Brito-Oliveira, M. Bispo, I.C.F. Moraes, O.H. Campanella, S.C. Pinho, Food Res. Int. 102, 759–767 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. F.A. Perrechil, A.C.K. Sato, R.L. Cunha, J. Food Eng. 104(1), 123–133 (2011)

    Article  CAS  Google Scholar 

  31. B.C. Beuschel, J.D. Culbertson, P.A. Partridge, D.M. Smith, J. Food Sci. 57(3), 605–609 (1992)

    Article  CAS  Google Scholar 

  32. M.J. Spotti, O. Tarhan, S. Schaffter, C. Corvalan, O.H. Campanella, Food Hydrocoll. 63, 696–704 (2016)

    Article  CAS  Google Scholar 

  33. A.R. Abhyankar, D.M. Mulvihill, M.A.E. Auty, Food Struct. 1(2), 127–136 (2014)

    Article  Google Scholar 

  34. N. Özkan, H. Xin, X.D. Chen, J. Food Sci. 67(5), 1814–1820 (2002)

    Article  Google Scholar 

  35. K.H. Lee, H.S. Ryu, K.C. Rhee, JAOCS 80(1), 85–90 (2003)

    Article  CAS  Google Scholar 

  36. J. Jiang, J. Chen, Y.L. Xiong, J. Agric. Food Chem. 57(16), 7576–7583 (2009)

    Article  CAS  PubMed  Google Scholar 

  37. A.L.M. Braga, A. Azevedo, M.J. Marques, M. Menossi, R.L. Cunha, Food Hydrocoll. 20(8), 1178–1189 (2006)

    Article  CAS  Google Scholar 

  38. C. Wang, S. Damodaran, J. Agric. Food Chem. 39(3), 433–438 (1991)

    Article  CAS  Google Scholar 

  39. V.E. Sánchez, G.B. Bartholomai, A.M.R. Pilosof, LWT - Food Sci. Technol. 28(4), 380–385 (1995)

    Article  Google Scholar 

  40. P.J. Fleming, G.D. Rose, Protein Sci. 14(7), 1911–1917 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. F. Ma, C. Chen, G. Sun, W. Wang, H. Fang, Z. Han, Innov. Food Sci. Emerg. Technol. 14, 31–37 (2012)

    Article  CAS  Google Scholar 

  42. M. Yang, F. Liu, C. Tang, Food Res. Int. 52(1), 409–418 (2013)

    Article  CAS  Google Scholar 

  43. S.L. Turgeon, M. Beaulieu, C. Schmitt, C. Sanchez, Curr. Opin. Colloid Interface Sci. 8(4-5), 401–414 (2003)

    Article  CAS  Google Scholar 

  44. E. Dickinson, S.T. Hong, J. Agric. Food Chem. 43(10), 2560–2566 (1995)

    Article  CAS  Google Scholar 

  45. J. Chen, E. Dickinson, M. Langton, A.M. Hermansson, LWT - Food Sci. Technol. 33(4), 299–307 (2000)

    Article  CAS  Google Scholar 

  46. Y.L. Xiong, J.E. Kinsella, Milchwissenschaft 46(4), 207–212 (1991)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for fellowships for Thais C. Brito-Oliveira (grants 2014/26106-2 and 2016/03271-3) and the University of São Paulo for a fellowship for Marina Bispo. The authors also thank Agropalma, Danisco and Cargill for donating the palm stearin, xanthan gum, and locust bean gum, respectively, and the National Institute of Science and Technology on Photonics Applied to Cell Biology (INFABiC) at the State University of Campinas (Unicamp) for access to the LSM 780 NLO-Zeiss inverted microscope (Zeiss, Germany). The authors also would like to thank Dr. Robert L Seiler of the Life Science Microscopy Facility at Purdue University for his technical assistance in cryo-SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha C. Pinho.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 847 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito-Oliveira, T.C., Bispo, M., Moraes, I.C.F. et al. Cold-Set Gelation of Commercial Soy Protein Isolate: Effects of the Incorporation of Locust Bean Gum and Solid Lipid Microparticles on the Properties of Gels. Food Biophysics 13, 226–239 (2018). https://doi.org/10.1007/s11483-018-9529-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-018-9529-4

Keywords

Navigation