Food Biophysics

, Volume 13, Issue 3, pp 226–239 | Cite as

Cold-Set Gelation of Commercial Soy Protein Isolate: Effects of the Incorporation of Locust Bean Gum and Solid Lipid Microparticles on the Properties of Gels

  • Thais C. Brito-Oliveira
  • Marina Bispo
  • Izabel C. F. Moraes
  • Osvaldo H. Campanella
  • Samantha C. Pinho


This study aimed to evaluate the ability of commercial soy protein isolate (SPI) to form cold-set gels under different pHs (5–11), pre-heating temperatures (60 °C, 80 °C), CaCl2 (0–15 mM) and SPI (5–15%, w/v) concentrations, and also select a formulation for the investigation of the effects of incorporating locust bean gum (LBG) (0–0.3%, w/v) and solid lipid microparticles (SLM) on gels rheological and microstructural properties. Gels were evaluated in terms of visual aspect, water-holding capacity, microstructure (using confocal laser scanning microscopy and cryo-scanning electronic microscopy) and rheological properties. SPI showed higher solubilities at pHs 7 (32.0%), 9 (51.6%) and 11 (100%). Self-supported gels were obtained under several conditions at alkaline pHs. At pH 7, only systems pre-heated to 80 °C with 15% (w/v) SPI and 10 or 15 mM CaCl2 gave self-supported gels. At neutral pH, samples showed relative structural instability, which was minimized with LBG incorporation. Formulations GSPI (pH 7, preheated to 80 °C, 15% (w/v) SPI, 10 mM CaCl2) and GMIX (pH 7, preheated to 80 °C, 15% (w/v) SPI, 0.2% (w/v) LBG, 15 mM CaCl2) were selected for emulsion-filled gels (EFG) production. Power law parameters (K′, K″), calculated from frequency sweep results, revealed that non-filled GMIX (K′: 472.1; K″: 77.6) was stronger than GSPI (K′: 170.4; K″: 33.6). Besides, GMIX showed microphase separation. SLM stabilized with Tween 80-Span 80 were active fillers in EFG, altering microstructures and increasing G’, G” and the Young’s modulus (1.8 to 2.1 kPa for GSPI and 1.4 to 2.2 kPa for GMIX).


Emulsion-filled gels Cold-set gelation Soy protein isolate Locust bean gum Solid lipid microparticles 



The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for fellowships for Thais C. Brito-Oliveira (grants 2014/26106-2 and 2016/03271-3) and the University of São Paulo for a fellowship for Marina Bispo. The authors also thank Agropalma, Danisco and Cargill for donating the palm stearin, xanthan gum, and locust bean gum, respectively, and the National Institute of Science and Technology on Photonics Applied to Cell Biology (INFABiC) at the State University of Campinas (Unicamp) for access to the LSM 780 NLO-Zeiss inverted microscope (Zeiss, Germany). The authors also would like to thank Dr. Robert L Seiler of the Life Science Microscopy Facility at Purdue University for his technical assistance in cryo-SEM analyses.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

Supplementary material

11483_2018_9529_MOESM1_ESM.docx (848 kb)
ESM 1 (DOCX 847 kb)


  1. 1.
    K. Nishinari, Y. Fang, S. Guo, G.O. Phillips, Food Hydrocoll. 39, 301–318 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Maltais, G.E. Remondetto, M. Subirade, Food Hydrocoll. 22(4), 550–559 (2008)CrossRefGoogle Scholar
  3. 3.
    J.A.P. Vilela, A.L.F. Cavallieri, R.L. Cunha, Food Hydrocoll. 25(7), 1710–1718 (2011)CrossRefGoogle Scholar
  4. 4.
    A.C. Alting, H.H.J. de Jongh, R.W. Visschers, J.F.A. Simons, J. Agric. Food Chem. 50(16), 4682–4689 (2002)CrossRefGoogle Scholar
  5. 5.
    C. Rocha, J.A. Teixeira, L. Hilliou, P. Sampaio, M.P. Gonçalves, Food Hydrocoll. 23(7), 1734–1745 (2009)CrossRefGoogle Scholar
  6. 6.
    A.L.F. Cavallieri, R.L. Cunha, Food Biophys. 4(2), 94–105 (2009)CrossRefGoogle Scholar
  7. 7.
    A.C. Alting, R.J. Hamer, C.G. de Kruif, M. Paques, R.W. Visschers, Food Hydrocoll. 17(4), 469–479 (2003)CrossRefGoogle Scholar
  8. 8.
    Y. Chang, D. Li, L. Wang, C. Bi, B. Adhikari, Carbohydr. Polym. 108, 183–191 (2014)CrossRefGoogle Scholar
  9. 9.
    M.C. Puppo, D.A. Sorgentini, M.C. Añón, J. Am. Oil Chem. Soc 80(6), 605–611 (2003)CrossRefGoogle Scholar
  10. 10.
    C. Tang, X. Wang, X. Yang, L. Li, J. Food. Eng 92, 432–437 (2009)CrossRefGoogle Scholar
  11. 11.
    K.R. Kuhn, A.L.F. Cavallieri, R.L. Cunha, Food Hydrocoll. 25(5), 1302–1310 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Bertrand, S.L. Turgeon, Food Hydrocoll. 21(2), 159–166 (2007)CrossRefGoogle Scholar
  13. 13.
    V.J. Morris, Curr. Opin. Colloid Interface Sci. 2(6), 567–572 (1997)CrossRefGoogle Scholar
  14. 14.
    S. Jong, F. Van De Velde, Food Hydrocoll. 21(7), 1172–1187 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Jong, H. Jan Klok, F. Van De Velde, Food Hydrocoll. 23(3), 755–764 (2009)CrossRefGoogle Scholar
  16. 16.
    S.R. Monteiro, S. Rebelo, O.A.B.C. Silva, J.A. Lopes-da-Silva, Food Hydrocoll. 33(2), 349–360 (2013)CrossRefGoogle Scholar
  17. 17.
    C. Bi, D. Li, L. Wang, B. Adhikari, LWT - Food Sci. Technol. 75, 1–8 (2007)CrossRefGoogle Scholar
  18. 18.
    S. Barak, D. Mudgil, Int. J. Biol. Macromol. 66, 74–80 (2014)CrossRefGoogle Scholar
  19. 19.
    D.E. Dunstan, Y. Chen, M.-L. Liao, R. Salvatore, D.V. Boger, M. Prica, Food Hydrocoll. 15(4–6), 475–484 (2001)CrossRefGoogle Scholar
  20. 20.
    C. Sandolo, D. Bulone, M.R. Mangione, S. Margheritelli, C.D. Meo, F. Alhaique, P. Matricardi, T. Coviello, Carbohydr. Polym. 82(3), 733–741 (2010)CrossRefGoogle Scholar
  21. 21.
    G. Lorenzo, N. Zaritzky, A. Califano, Food Hydrocoll. 30(2), 672–680 (2013)CrossRefGoogle Scholar
  22. 22.
    K. Liu, M. Stieger, E. van der Linden, F. van de Velde, Food Hydrocoll. 44, 244–259 (2015)CrossRefGoogle Scholar
  23. 23.
    L. Oliver, E. Scholten, G.A. van Aken, Food Hydrocoll. 43, 299–310 (2015)CrossRefGoogle Scholar
  24. 24.
    G. Sala, G.A. van Aken, M.A.C. Stuart, F. van de Velde, J. Texture Stud. 38(4), 511–535 (2007)CrossRefGoogle Scholar
  25. 25.
    G. Sala, T. van Vliet, M.A.C. Stuart, G.A. van Aken, F. van de Velde, Food Hydrocoll. 23, 1853–1863 (2009)CrossRefGoogle Scholar
  26. 26.
    G. Sala, T. van Vliet, M.A.C. Stuart, G.A. van Aken, F. van de Velde, Food Hydrocoll. 23(5), 1381–1393 (2009)CrossRefGoogle Scholar
  27. 27.
    R. Davies, D.E. Graham, B. Vincent, J. Colloid Interface Sci. 116(1), 88–89 (1987)CrossRefGoogle Scholar
  28. 28.
    C.V. Morr, B. German, J.E. Kinsella, J.M. Regenstein, J.P. Van Buren, A. Kilara, B.A. Lewis, M.E. Mangino, J. Food Sci. 50(6), 1715–1718 (1985)CrossRefGoogle Scholar
  29. 29.
    T.C. Brito-Oliveira, M. Bispo, I.C.F. Moraes, O.H. Campanella, S.C. Pinho, Food Res. Int. 102, 759–767 (2017)CrossRefGoogle Scholar
  30. 30.
    F.A. Perrechil, A.C.K. Sato, R.L. Cunha, J. Food Eng. 104(1), 123–133 (2011)CrossRefGoogle Scholar
  31. 31.
    B.C. Beuschel, J.D. Culbertson, P.A. Partridge, D.M. Smith, J. Food Sci. 57(3), 605–609 (1992)CrossRefGoogle Scholar
  32. 32.
    M.J. Spotti, O. Tarhan, S. Schaffter, C. Corvalan, O.H. Campanella, Food Hydrocoll. 63, 696–704 (2016)CrossRefGoogle Scholar
  33. 33.
    A.R. Abhyankar, D.M. Mulvihill, M.A.E. Auty, Food Struct. 1(2), 127–136 (2014)CrossRefGoogle Scholar
  34. 34.
    N. Özkan, H. Xin, X.D. Chen, J. Food Sci. 67(5), 1814–1820 (2002)CrossRefGoogle Scholar
  35. 35.
    K.H. Lee, H.S. Ryu, K.C. Rhee, JAOCS 80(1), 85–90 (2003)CrossRefGoogle Scholar
  36. 36.
    J. Jiang, J. Chen, Y.L. Xiong, J. Agric. Food Chem. 57(16), 7576–7583 (2009)CrossRefGoogle Scholar
  37. 37.
    A.L.M. Braga, A. Azevedo, M.J. Marques, M. Menossi, R.L. Cunha, Food Hydrocoll. 20(8), 1178–1189 (2006)CrossRefGoogle Scholar
  38. 38.
    C. Wang, S. Damodaran, J. Agric. Food Chem. 39(3), 433–438 (1991)CrossRefGoogle Scholar
  39. 39.
    V.E. Sánchez, G.B. Bartholomai, A.M.R. Pilosof, LWT - Food Sci. Technol. 28(4), 380–385 (1995)CrossRefGoogle Scholar
  40. 40.
    P.J. Fleming, G.D. Rose, Protein Sci. 14(7), 1911–1917 (2005)CrossRefGoogle Scholar
  41. 41.
    F. Ma, C. Chen, G. Sun, W. Wang, H. Fang, Z. Han, Innov. Food Sci. Emerg. Technol. 14, 31–37 (2012)CrossRefGoogle Scholar
  42. 42.
    M. Yang, F. Liu, C. Tang, Food Res. Int. 52(1), 409–418 (2013)CrossRefGoogle Scholar
  43. 43.
    S.L. Turgeon, M. Beaulieu, C. Schmitt, C. Sanchez, Curr. Opin. Colloid Interface Sci. 8(4-5), 401–414 (2003)CrossRefGoogle Scholar
  44. 44.
    E. Dickinson, S.T. Hong, J. Agric. Food Chem. 43(10), 2560–2566 (1995)CrossRefGoogle Scholar
  45. 45.
    J. Chen, E. Dickinson, M. Langton, A.M. Hermansson, LWT - Food Sci. Technol. 33(4), 299–307 (2000)CrossRefGoogle Scholar
  46. 46.
    Y.L. Xiong, J.E. Kinsella, Milchwissenschaft 46(4), 207–212 (1991)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Thais C. Brito-Oliveira
    • 1
  • Marina Bispo
    • 1
  • Izabel C. F. Moraes
    • 1
  • Osvaldo H. Campanella
    • 2
    • 3
  • Samantha C. Pinho
    • 1
  1. 1.Department of Food Engineering, School of Animal Science and Food Engineering (FZEA)University of São Paulo (USP)PirassunungaBrazil
  2. 2.Agricultural and Biological EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Whistler Carbohydrate Research CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations