Skip to main content
Log in

Cold-Set Whey Protein Gels with Addition of Polysaccharides

  • Original Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Cold-set whey protein (WP) gels with addition of xanthan or guar were evaluated by mechanical properties and scanning electron microscopy. Gels were formed after the addition of different amounts of glucono-δ-lactone to thermally denatured WP solutions, leading to different acidification rates and final pH values. At lower acidification rates and higher final pH, gels showed more discontinuous structure and weaker and less elastic network, which was attributed to a predominance of phase separation during gel formation due to slower gelation kinetics. In contrast, at higher acidification rates and lower final pHs, gelation prevailed over phase separation, favoring the formation of less porous structures, resulting in stronger and more elastic gels. The gels’ fractal dimension (D f; structure complexity) and lacunarity were also influenced by the simultaneous effects of gelation and phase separation. For systems where phase separation was the prevailing mechanism, greater lacunarity parameters were usually observed, describing the heterogeneity of pore distribution, while the opposite occurred at prevailing gelation conditions. Increase in guar concentration or lower final pH of xanthan gels entailed in D f reduction, while the increase in xanthan concentration resulted in higher D f. Such a result suggests that the network contour length was rugged, but this pattern was reduced by the increase of electrostatic interactions among WP and xanthan. Guar addition caused the formation of gel network with smoother surfaces, which could be attributed to the guar–protein excluded volume effects leading to an increase in protein–protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.H. Clark, G.M. Kavanagh, S.B. Ross-Murphy, Food Hydrocoll. 15, 383–400 (2001). doi:10.1016/S0268-005X(01)00042-X

    Article  CAS  Google Scholar 

  2. C.M. Bryant, D.J. McClements, Trends Food Sci. Technol. 9, 143–151 (1998). doi:10.1016/S0924-2244(98)00031-4

    Article  CAS  Google Scholar 

  3. Z.Y. Ju, A. Kilara, J. Agric. Food Chem. 46, 1830–1835 (1998). doi:10.1021/jf9710185

    Article  CAS  Google Scholar 

  4. A.C. Alting, H.H.J. de Jongh, R.W. Visschers, J. Simons, J. Agric. Food Chem. 50, 4682–4689 (2002). doi:10.1021/jf011657m

    Article  CAS  Google Scholar 

  5. A.C. Alting, R.J. Hamer, C.G. De Kruif, M. Paques, R.W. Visschers, Food Hydrocoll. 17, 469–479 (2003). doi:10.1016/S0268-005X(03)00023-7

    Article  CAS  Google Scholar 

  6. A.C. Alting, R.J. Hamer, C.G. De Kruif, R.W. Visschers, J. Agric. Food Chem. 51, 3150–3156 (2003). doi:10.1021/jf0209342

    Article  Google Scholar 

  7. A. Syrbe, W.J. Bauer, N. Klostermeyer, Int. Dairy J. 8, 179–193 (1998). doi:10.1016/S0958-6946(98)00041-7

    Article  CAS  Google Scholar 

  8. S. de Jong, H. Jan Klok, F. van de Velde, Food Hydrocoll. 23, 755–764 (2009). doi:10.1016/j.foodhyd.2008.03.017

    Article  CAS  Google Scholar 

  9. S. de Jong, F. van de Velde, Food Hydrocoll. 21, 1172–1187 (2007). doi:10.1016/j.foodhyd.2006.09.004

    Article  CAS  Google Scholar 

  10. A.L.F. Cavallieri, R.L. Da Cunha, Food Hydrocoll. 22, 439–448 (2008). doi:10.1016/j.foodhyd.2007.01.001

    Article  CAS  Google Scholar 

  11. A.C. Alting, R.J. Hamer, G.G. de Kruif, R.W. Visschers, J. Agric. Food Chem. 48, 5001–5007 (2000). doi:10.1021/jf000474h

    Article  CAS  Google Scholar 

  12. A.L.F. Cavallieri, A.P. Costa-Netto, M. Menossi, R.L. Da Cunha, Lait. 87, 535–554 (2007). doi:10.1051/lait:2007032

    Article  CAS  Google Scholar 

  13. W.C. Wielinga, in Galactomannans, ed. by G.O. Phillips, P.A. Williams. Handbook of Hydrocolloids (CRC, Boca Raton, 2000), pp. 153–171

    Google Scholar 

  14. G. Sworn, in Xanthan gum, ed. by G.O. Phillips, P.A. Williams. Handbook of Hydrocolloids (CRC, Boca Raton, 2000), pp. 179–193

    Google Scholar 

  15. U.K. Laemmli, Nature 227, 680–685 (1970). doi:10.1038/227680a0

    Article  CAS  Google Scholar 

  16. J.R. Hodge, B.T. Hofreiter, in Determination of reducing sugars and carbohydrates: Phenol Sulfuric test, ed. by R.L. Wistler, M.L. Wolfman. Methods in Carbohydrate Chemistry (Academic, New York, 1962), pp. 380–394

    Google Scholar 

  17. AOAC., Official Methods of Analysis of AOAC international. Association of Official Analytical Chemists (Patricia Cunniff, Gaithersburg, USA, 1997)

    Google Scholar 

  18. J.F. Steffe, Rheological Methods in Food Process Engineering (Freeman, East Lansing, USA, 1996)

    Google Scholar 

  19. L.A. Pugnaloni, L. Matia-Merino, E. Dickinson, Colloid. Surf. B. 42, 211–217 (2005). doi:10.1016/j.colsurfb.2005.03.002

    Article  CAS  Google Scholar 

  20. B.H. Kaye, A Random Walk Through Fractal Dimensions (VHC Verlagsgesellschft, Weinheim, Germany, 1989)

    Google Scholar 

  21. E. Davila, M. Toldra, E. Saguer, C. Carretero, D. Pares, LWT-Food Sci. Technol. 40, 1321–1329 (2007)

    Article  CAS  Google Scholar 

  22. E. Dàvila, D. Perés, Food Hydrocoll. 21, 147–153 (2007). doi:10.1016/j.foodhyd.2006.02.004

    Article  CAS  Google Scholar 

  23. C.M. Bryant, D.J. McClements, Food Hydrocoll. 14, 383–390 (2000). doi:10.1016/S0268-005X(00)00018-7

    Article  CAS  Google Scholar 

  24. D.V. Zasypkin, E.E. Braudo, V.B. Tolstoguzov, Food Hydrocoll. 11, 159–170 (1997)

    CAS  Google Scholar 

  25. V. Tolstoguzov, Food Hydrocoll. 17, 1–23 (2003). doi:10.1016/S0268-005X(01)00111-4

    Article  CAS  Google Scholar 

  26. C. Sanchez, R. Zuniga-Lopez, C. Schmitt, S. Despond, J. Hardy, Int. Dairy J. 10, 199–212 (2000). doi:10.1016/S0958-6946(00)00030-3

    Article  CAS  Google Scholar 

  27. M. Langton, A.M. Hermansson, Food Hydrocoll. 10, 179–191 (1996)

    Article  CAS  Google Scholar 

  28. T. Hagiwara, H. Kumagai, K. Nakamura, Food Hydrocoll. 12, 29–36 (1998). doi:10.1016/S0268-005X(98)00043-5

    Article  CAS  Google Scholar 

  29. T. Hagiwara, H. Kumagai, T. Matsunaga, J. Agric. Food Chem. 45, 3807–3812 (1997). doi:10.1021/jf970348m

    Article  CAS  Google Scholar 

  30. A.G. Marangoni, S. Barbut, S.E. McGauley, M. Marcone, S.S. Narine, Food Hydrocoll. 14, 61–74 (2000). doi:10.1016/S0268-005X(99)00046-6

    Article  CAS  Google Scholar 

  31. M. Mellema, J.H.J. van Opheusden, T. van Vliet, J. Rheol. (NYNY). 46, 11–29 (2002). doi:10.1122/1.1423311

    Article  CAS  Google Scholar 

  32. M. Mellema, P. Walstra, J.H.J. van Opheusden, T. van Vliet, Adv. Colloid. Interface Sci. 98, 25–50 (2002). doi:10.1016/S0001-8686(01)00089-6

    Article  CAS  Google Scholar 

  33. Q.X. Zhong, C.R. Daubert, O.D. Velev, Langmuir. 20, 7399–7405 (2004). doi:10.1021/la036147w

    Article  CAS  Google Scholar 

  34. Q.X. Zhong, C.R. Daubert, O.D. Velev, J. Agric. Food Chem. 55, 2688–2697 (2007). doi:10.1021/jf0625914

    Article  CAS  Google Scholar 

  35. A. Barret, M. Peleg, Food Sci. Technol.-Lebensm.–Wiss. Technol. 28, 553–563 (1995). doi:10.1016/0023-6438(95)90001-2

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by FAPESP (04/08517-8) and CNPq (301869/2006-5 and 140506/2003-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosiane Lopes Cunha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavallieri, Â.L.F., Cunha, R.L. Cold-Set Whey Protein Gels with Addition of Polysaccharides. Food Biophysics 4, 94–105 (2009). https://doi.org/10.1007/s11483-009-9105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-009-9105-z

Keywords

Navigation