Food Biophysics

, Volume 13, Issue 2, pp 208–215 | Cite as

Immobilized CALB Catalyzed Transesterification of Soybean Oil and Phytosterol

  • Dianyu Yu
  • Xu Zhang
  • Dezhi Zou
  • Tong Wang
  • Tianyi Liu
  • Liqi Wang
  • Walid Elfalleh
  • Lianzhou Jiang


Candida antarctica lipase B (CALB) was immobilized on Fe3O4/SiOx-g-P(GMA) polymer carrier to catalyzed the transesterification of soybean oil and phytosterol. The enzyme loading of the obtained particles was 98.7 mg/g supports and the enzyme activity was 1226.5 U/g. The average particle size was 100.5 ± 1.30 nm and the magnetization was 15.80 emu/g. The immobilized enzyme showed higher activities at a wider range of pH and temperatures. Its optimum reaction temperature was up to 50 °C; increased by 5 °C compared to the free enzyme. The obtained magnetic immobilized Fe3O4/SiOx-g-P(GMA) lipase was nanoscale. First-grade soybean oils were used as a substrate. System pH was adjusted to 7.0. The optimal reaction temperature was 50 °C and the reaction time was 3 h. The phytosterol concentration of 5% and immobilized CALB of 2% were obtained. The conversion rate of transesterification reaction between soybean oil and phytosterol was 86.2%. The use of magnets can quickly separate the immobilized enzymes from the substrates. The relative activity of the immobilized enzymes was 83.0% when reused seven times. The prepared immobilized CALB can improve efficiently enzyme activity and reutilization.


Nano-magnetic Fe3O4/SiOx-g-P(GMA) lipase Soybean oil Transesterification Phytosterol esters Effectiveness 



This work was supported by a grant from the National Natural Science Foundation of China (NSFC): Study on the mechanism of nanomagnetic enzyme hydrolysis of soybean oil by multi-effect orientation and biosynthesis of functional lipids (No: 31571880).

This work was supported by a grant from the Province Natural Science Foundation of Heilong Jang: Study on the Mechanism of Continuous Orientation Esterification of Nanometer Magnetic Lipase (No: C2017019).

This work was also supported by a grant from the National Research Project in 13th Five-Year: Research on Key Technologies of green soybean oil production and large scale intelligent equipment. (No: 2016YFD0401402).


  1. 1.
    R.A. Moreau, B.D. Whitaker, K.B. Hicks, Prog. Lipid Res. 41(6), 457–500 (2002)CrossRefGoogle Scholar
  2. 2.
    J. Quilez, P. Garcia-Lorda, J. Salas-Salvado, Clin. Nutr. 22(4), 343–351 (2003)CrossRefGoogle Scholar
  3. 3.
    M.-M. Zheng, Y. Lu, L. Dong, P.-M. Guo, Q.-C. Deng, W.-L. Li, Y.-Q. Feng, F.-H. Huang, Bioresour. Technol. 115, 141–146 (2012)CrossRefGoogle Scholar
  4. 4.
    H. Gylling, J. Plat, S. Turley, H.N. Ginsberg, L. Ellegaard, W. Jessup, P.J. Jones, D. Lütjohann, W. Maerz, L. Masana, Atherosclerosis 232(2), 346–360 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Molina-Gutiérrez, N.L. Hakalin, L. Rodríguez-Sanchez, A. Prieto, M.J. Martínez, Food Chem. 221, 1458–1465 (2017)CrossRefGoogle Scholar
  6. 6.
    C.T. Srigley, E.A. Haile, J. Food Compos. Anal. 40, 163–176 (2015)CrossRefGoogle Scholar
  7. 7.
    C.F. Torres, G. Torrelo, F.J. Senorans, G. Reglero, Process Biochem. 42(9), 1335–1341 (2007)CrossRefGoogle Scholar
  8. 8.
    C.F. Torres, T. Fornari, G. Torrelo, F.J. Señoráns, G. Reglero, Eur. J. Lipid Sci. Technol. 111(5), 459–463 (2009)CrossRefGoogle Scholar
  9. 9.
    S. N. Kautsari, S. Handayani, and S. Hudiyono, in AIP Conf. Proc. (AIP Publishing, 2016), p. 020059Google Scholar
  10. 10.
    W.-J. Ting, K.-Y. Tung, R. Giridhar, W.-T. Wu. J. Mol. Catal. B Enzym. 42(1-2), 32–38 (2006)CrossRefGoogle Scholar
  11. 11.
    W. Liu, F. Zhou, X.-Y. Zhang, Y. Li, X.-Y. Wang, X.-M. Xu, and Y.-W. Zhang, J. Nanosci. Nanotechnol. 14, 3068 (2014), 4, 3072Google Scholar
  12. 12.
    S.-C. Chen, K.-J. Duan, Int. J. Mol. Sci. 16, 12499 (2015)CrossRefGoogle Scholar
  13. 13.
    G.-H. Xia, W. Liu, X.-P. Jiang, X.-Y. Wang, Y.-W. Zhang, J. Guo, J. Nanosci. Nanotechnol. 17(1), 370–376 (2017)CrossRefGoogle Scholar
  14. 14.
    S. Tamalampudi, M.R. Talukder, S. Hama, T. Numata, A. Kondo, H. Fukuda, Biochem. Eng. J. 39(1), 185–189 (2008)CrossRefGoogle Scholar
  15. 15.
    L. Lei, X. Liu, Y. Li, Y. Cui, Y. Yang, G. Qin, Mater. Chem. Phys. 125(3), 866–871 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Yu, Y. Ma, L. Jiang, W. Elfalleh, M. Shi, L. Hu, Eur. Food Res. Technol. 237(5), 811–817 (2013)CrossRefGoogle Scholar
  17. 17.
    H. Li, C. Cao, Y. Zhao, Chem. Eng. Technol. 34(5), 760–766 (2011)CrossRefGoogle Scholar
  18. 18.
    Y. Qu, L. Sun, X. Li, S. Zhou, Q. Zhang, L. Sun, D. Yu, L. Jiang, B. Tian, LWT-Food Sci. Technol. 73, 290–295 (2016)CrossRefGoogle Scholar
  19. 19.
    M.Y. Arica, H. Soydogan, G. Bayramoglu, Bioprocess Biosyst. Eng. 33(2), 227–236 (2010)CrossRefGoogle Scholar
  20. 20.
    L. Lei, Y. Bai, Y. Li, L. Yi, Y. Yang, C. Xia, J. Magn. Magn. Mater. 321(4), 252–258 (2009)CrossRefGoogle Scholar
  21. 21.
    M.P. Klein, C.W. Scheeren, A.S.G. Lorenzoni, J. Dupont, J. Frazzon, P.F. Hertz, Process Biochem. 46(6), 1375–1379 (2011)CrossRefGoogle Scholar
  22. 22.
    X. Liu, Y. Guan, R. Shen, H. Liu, J. Chromatogr. B 822(1-2), 91–97 (2005)CrossRefGoogle Scholar
  23. 23.
    U. Guzik, K. Hupert-Kocurek, A. Marchlewicz, D. Wojcieszynska, Electron. J. Biotechnol. 17(2), 83–88 (2014)CrossRefGoogle Scholar
  24. 24.
    D. Spinelli, E. Fatarella, A. Di Michele, R. Pogni, Process Biochem. 48(2), 218–223 (2013)CrossRefGoogle Scholar
  25. 25.
    F. Turon, Y. Caro, P. Villeneuve, M. Pina, J. Graille, OCL Ol. Corps Gras Lipides 10(5-6), 400–404 (2003)CrossRefGoogle Scholar
  26. 26.
    S.B. More, J.T. Waghmare, P.R. Gogate, Ultrason. Sonochem. 36, 253 (2017)CrossRefGoogle Scholar
  27. 27.
    L. Hu, S. Llibin, J. Li, L. Qi, X. Zhang, D. Yu, E. Walid, L. Jiang, Bioprocess Biosyst. Eng. 38(12), 2343–2347 (2015)CrossRefGoogle Scholar
  28. 28.
    N. Gharat, V.K. Rathod, Ultrason. Sonochem. 20(3), 900–905 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Food ScienceNortheast Agricultural UniversityHarbinChina
  2. 2.School of Computer and Information EngineeringHarbin University of CommerceHarbinChina
  3. 3.UR Catalyse et Matériaux pour l’Environnement et les Procédés URCMEP (UR11ES85), Faculté des Sciences de GabèsUniversité de GabèsGabèsTunisia

Personalised recommendations