Skip to main content
Log in

Study on the Deacidification of Rice Bran Oil Esterification by Magnetic Immobilized Lipase

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Candida antarctica lipase B (CALB) was immobilized on Fe3O4/SiOx-g-P (GMA) polymer carrier to obtain nano-magnetic Fe3O4/SiOx-g-P (GMA) lipase (magnetic enzyme). The obtained magnetic enzyme particles had an enzyme protein loading of 98.7 mg/g, an enzyme activity of 1226.5 U/g, an average particle diameter of 100.5 ± 1.30 nm, a magnetization of 15.80 emu/g, a magnetic enzyme optimum pH of 7.0, and an optimum temperature of 50 °C. The prepared magnetic enzyme was used as a catalyst, phytosterol was esterified with free fatty acid (FFA) in rice bran oil (RBO). Under the conditions of pH was 7.0, the FFA/phytosterol molar ratio was 1:4, the dosage of the immobilized CALB was 10.0%, the esterification temperature was 50 °C, the esterification time was 72 h, and the molecular sieve addition was 8.0%. The FFA content in RBO decreased from 16.0 to 2.4%, and the conversion rate of phytosterol was 85.7%. When the magnetic enzyme was used repeatedly for 7 times, the relative enzyme activity of the magnetic enzyme was 83.0%, which improved the utilization efficiency of the enzyme.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lavanya MN, Saikiran KCS, Venkatachalapathy N (2019) Stabilization of rice bran milling fractions using microwave heating and its effect on storage. J Food Sci Technol 56:889–895. https://doi.org/10.1007/s13197-018-3550-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aryusuk K, Puengtham J, Lilitchan S, Jeyashoke N, Krisnangkura K (2008) Effects of crude rice bran oil components on alkali-refining loss. J Am Oil Chem Soc 85:475–479. https://doi.org/10.1007/s11746-008-1215-0

    Article  CAS  Google Scholar 

  3. Habaki H, Hayashi T, Egashira R (2008) Deacidification process of crude inedible plant oil by esterification for biodiesel production. J Environ Chem Eng 6:3054–3060. https://doi.org/10.1016/j.jece.2018.04.039

    Article  CAS  Google Scholar 

  4. Wang X, Lu J, Liu H, Jin Q, Wang X (2016) Improved deacidification of high-acid rice bran oil by enzymatic esterification with phytosterol. Process Biochem 5:1496–1502. https://doi.org/10.1016/j.procbio.2016.08.013

    Article  CAS  Google Scholar 

  5. Guajardo N, Ahumada K, Domínguez de María P et al (2018) Remarkable stability of Candida antarctica lipase B immobilized via cross-linking aggregates (CLEA) in deep eutectic solvents. Biocatal Biotransformation 37:106–114. https://doi.org/10.1080/10242422.2018.1492567

    Article  CAS  Google Scholar 

  6. Kautsari SN, Handayani S, Hudiyono S (2016) Interesterification of palm oil by using immobilized Candida rugosa lipase on Fe3O4-polydopamine nanoparticles. AIP Conf Proc 1729(1):157. https://doi.org/10.1063/1.4946962

    Article  CAS  Google Scholar 

  7. Shahzad N, Khan W (2017) Phytosterols as a natural anticancer agent: current status and future perspective. Biomed Pharmacother 88:786–794. https://doi.org/10.1016/j.biopha.2017.01.068

    Article  CAS  PubMed  Google Scholar 

  8. Moreau RA, Nystr ML, Whitaker BD et al (2018) Phytosterols and their derivatives: structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 70:35–61. https://doi.org/10.1016/j.plipres.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  9. Li YC, Li CL, Li R (2018) Associations of dietary phytosterols with blood lipid profiles and prevalence of obesity in Chinese adults, a cross-sectional study. Lipids Health Dis 17:54. https://doi.org/10.1186/s12944-018-0703-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zheng M-M, Lu Y, Dong L (2012) Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters. Bioresour Technol 115:141–146. https://doi.org/10.1016/j.biortech.2011.11.128

    Article  CAS  PubMed  Google Scholar 

  11. Chawla R, Goel N (2016) Phytosterol and its esters as novel food ingredients: a review. Asian J Dairy Food Res 35:217

    Article  Google Scholar 

  12. Molina-Gutiérrez M, Hakalin NLS, Rodríguez-Sanchez L (2017) Green synthesis of β-sitostanol esters catalyzed by the versatile lipase/sterol esterase from Ophiostoma piceae. Food Chem 221:1458–1465. https://doi.org/10.1016/j.foodchem.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  13. Qianchun D, Pin Z, Qingde H (2011) Chemical synthesis of phytosterol esters of polyunsaturated fatty acids with ideal oxidative stability. Eur J Lipid Sci Technol 113:441–449. https://doi.org/10.1002/ejlt.201000090

    Article  CAS  Google Scholar 

  14. Zheng MM, Huang Q, Huang FH et al (2014) Production of novel “functional oil” rich in diglycerides and phytosterol esters with “one-pot” enzymatic transesterification. J Agric Food Chem 62:5142–5148. https://doi.org/10.1021/jf500744n

    Article  CAS  PubMed  Google Scholar 

  15. Zheng MM, Lu Y, Huang FH, Wang L, Guo PM, Feng YQ, Deng QC (2012) Lipase immobilization on hyper-cross-linked polymer-coated silica for biocatalytic synthesis of phytosterol esters with controllable fatty acid composition. J Agric Food Chem 61(1):231–237

    Article  Google Scholar 

  16. Scholz B, Menzel N, Lander V et al (2011) Heating two types of enriched margarine: complementary analysis of phytosteryl/phytostanyl fatty acid esters and phytosterol/phytostanol oxidation products. J Agric Food Chem 64:2699–2708. https://doi.org/10.1021/acs.jafc.6b00617

    Article  CAS  Google Scholar 

  17. Xie W, Zang X (2017) Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles: a magnetic biocatalyst for interesterification of soybean oil. Food Chem 227:397–403. https://doi.org/10.1016/j.foodchem.2017.01.082

    Article  CAS  PubMed  Google Scholar 

  18. Xie W, Wang J (2012) Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil. Biomass Bioenergy 36:373–380. https://doi.org/10.1016/j.biombioe.2011.11.006

    Article  CAS  Google Scholar 

  19. Takaç S, Bakkal M (2007) Impressive effect of immobilization conditions on the catalytic activity and enantioselectivity of Candida rugosa, lipase toward S-Naproxen production. Process Biochem 42:1021–1027. https://doi.org/10.1016/j.biombioe.2011.11.006

    Article  CAS  Google Scholar 

  20. Tamalampudi S, Talukder MR, Hama S et al (2008) Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem Eng J 39:185–189. https://doi.org/10.1016/j.bej.2007.09.002

    Article  CAS  Google Scholar 

  21. Chen SC, Duan KJ (2015) Production of galactooligosaccharides using β-galactosidase immobilized on chitosan-coated magnetic nanoparticles with tris (hydroxymethyl) phosphine as an optional coupling agent. Int J Mol Sci 16:12499–12512. https://doi.org/10.3390/ijms160612499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu D, Ma Y, Jiang L et al (2013) Optimization of magnetic immobilized phospholipase A1, degumming process for soybean oil using response surface methodology. Eur Food Res Technol 237:811–817. https://doi.org/10.1007/s00217-013-2057-z

    Article  CAS  Google Scholar 

  23. Li H, Cao C, Zhao Y (2011) Hydrodynamic behaviors in gas-solid two-phase magnetic fluidized beds 1. Experimental results represented by a dimensionless number. Chem Eng Technol 34:760–766. https://doi.org/10.1002/ceat.201000411

    Article  CAS  Google Scholar 

  24. Yu D, Ma Y, Jiang L et al (2013) Optimization of magnetic immobilized phospholipase A1degumming process for soybean oil using response surface methodology. Eur Food Res Technol 237:811–817. https://doi.org/10.1007/s00217-013-2057-z

    Article  CAS  Google Scholar 

  25. Mohammadi M, Habibi Z, Dezvarei S et al (2014) Improvement of the stability and selectivity of Rhizomucor miehei, lipase immobilized on silica nanoparticles: selective hydrolysis of fish oil using immobilized preparations. Process Biochem 49:1314–1323. https://doi.org/10.1016/j.procbio.2014.04.012

    Article  CAS  Google Scholar 

  26. Lin L, Bai Y, Li Y et al (2009) Study on immobilization of lipase onto magnetic microspheres with epoxy groups. J Magn Magn Mater 321:252–258. https://doi.org/10.1016/j.jmmm.2008.08.047

    Article  CAS  Google Scholar 

  27. Hu L, Llibin S, Li J, Qi L, Zhang X, Yu D (2015) Lipase-catalyzed transesterification of soybean oil and phytosterol in supercritical CO2. Bioprocess Biosyst Eng 38:343–2347. https://doi.org/10.1007/s00449-015-1469-5

    Article  CAS  Google Scholar 

  28. Society AOC, Firestone D (1989) Official methods and recommended practices of the American Oil Chemists’Society. AOCS, Champaign

    Google Scholar 

  29. Liu X, Guan Y, Shen R et al (2005) Immobilization of lipase onto micron-size magnetic beads. J Chromatogr B 822:91–97. https://doi.org/10.1016/j.jchromb.2005.06.001

    Article  CAS  Google Scholar 

  30. Guzik U, Hupert-Kocurek K, Marchlewicz A et al (2014) Enhancement of biodegradation potential of catechol 1,2-dioxygenase through its immobilization in calcium alginate gel. Electron J Biotechnol 17:83–88. https://doi.org/10.1016/j.ejbt.2014.02.001

    Article  CAS  Google Scholar 

  31. Yu D, Zhang X, Zou D et al (2018) Immobilized CALB Catalyzed Transesterification of Soybean Oil and Phytosterol. Food Biophys 13:208–215. https://doi.org/10.1007/s11483-018-9526-7

    Article  CAS  Google Scholar 

  32. Sathya K, Saravanathamizhan R, Baskar G (2018) Ultrasound assisted Phytosynthesis of Iron Oxide Nanoparticle. Ultrason Sonochem 39:446–451. https://doi.org/10.1016/j.ultsonch.2017.05.017

    Article  CAS  Google Scholar 

  33. Zheng M, Zhu J, Huang F, Xiang X, Shi J et al (2015) Enzymatic deacidification of the rice bran oil and simultaneous preparation of phytosterol estersenriched functional oil catalyzed by immobilized lipase arrays. RSC Adv 5:70073–70079. https://doi.org/10.1039/C5RA11533G

    Article  CAS  Google Scholar 

  34. Zeng CX, Qi SJ, Li ZG (2015) Luo RM enzymatic synthesis of phytosterol esters catalyzed by Candida rugosa lipase in water-in-[Bmim]PF6 microemulsion. Bioprocess Biosyst Eng. 38:939–946. https://doi.org/10.1007/s00449-014-1339-6

    Article  CAS  PubMed  Google Scholar 

  35. Takanami T, Hayashi M, Hino F et al (2003) Effect of water content and temperature on Carica papaya lipase catalyzed esterification and transesterification reactions. OCL 10:400–404. https://doi.org/10.1051/ocl.2003.0400

    Article  Google Scholar 

  36. Villeneuve P, Turon F, Caro Y (2005) Lipase-catalyzed synthesis of canola phytosterols oleate sters as cholesterol lowering agents. Enzyme Microb Technol 37:150–155. https://doi.org/10.1016/j.enzmictec.2005.02.002

    Article  CAS  Google Scholar 

  37. Esperónrojas AA, Baezajiménez R, Canosarmiento C, García HS (2017) Structured mono- and diacylglycerols with a high content of medium chain fatty acids. J Oleo Sci 66:991–996. https://doi.org/10.5650/jos.ess17010

    Article  CAS  Google Scholar 

  38. Gharat N, Rathod VK (2013) Ultrasound assisted enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate. Ultrason Sonochem 20:900–905. https://doi.org/10.1016/j.molcatb.2012.11.007

    Article  CAS  PubMed  Google Scholar 

  39. Xia GH, Liu W, Jiang XP et al (2013) Surface modification of nanoparticles for immobilization of lipase. J Nanosci Nanotechnol 17:370–376. https://doi.org/10.1166/jnn.2017.10964

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was also supported by a grant from Rice bran high-value steady-state processing technology and intelligent equipment development and demonstration (No.: 2018YFD0401101). Additionally, this work was supported by a grant from the Province Natural Science Foundation of Heilong Jang: Study on the Mechanism of Continuous Orientation Esterification of Nanometer Magnetic Lipase (No.: C2017019). This work was supported by a grant from the National Natural Science Foundation of China (NSFC): Study on the mechanism of nanomagnetic enzyme hydrolysis of soybean oil by multi-effect orientation and biosynthesis of functional lipids (No.: 31571880). The authors would like to thank the anonymous reviewers and the editor for their comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanxia Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lanxia Qin and Fei Wu provided a lot of academic theoretical guidance and technical support for the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Yu, C., Wang, T. et al. Study on the Deacidification of Rice Bran Oil Esterification by Magnetic Immobilized Lipase. Catal Lett 150, 1256–1267 (2020). https://doi.org/10.1007/s10562-019-02939-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02939-9

Keywords

Navigation