Skip to main content
Log in

Interaction of β-Lactoglobulin with Small Hydrophobic Ligands - Influence of Covalent AITC Modification on β-LG Tryptic Cleavage

  • SPECIAL ISSUE ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Covalent modification of proteins with bioactive organosulfur compounds is suggested to reduce the smell and increase the stability of the compound. Aside from these effects the covalent modification may also alter the physiochemical properties of the protein. In this study, the whey protein β-lactoglobulin (β-LG) was covalently modified with bioactive organosulfur compound allyl isothiocyanate (AITC), originating from cabbage. Native and AITC modified β-LG were subjected to tryptic and chymotryptic digestion to assess the influence of the covalent modification on peptide formation. AITC was shown to modify at least 13 different amino acid residues, containing thiol- or amino groups, in a concentration dependent manner. Therefore, AITC modification can be controlled to some extent. Besides cysteine thiols, the most accessible amino groups for AITC modification were found at the N-terminal end of the protein (residues L1 and K8) along with lysine residues K91, K77 and K83. Higher amount of AITC addition resulted in a significant blocking of several tryptic cleavage sites of β-LG (for example residue K14) resulting in longer peptides, influencing the concentration of certain bioactive peptides following tryptic cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-Converting-Enzyme

ACN:

Acetonitrile

AITC:

Allyl isothiocyanate

ANOVA:

Analysis of Variance’

β-LG:

β-lactoglobulin

CID:

Collision-induced dissociation

FA:

Formic acid

FT:

Fourier Transformation

GC:

Gas chromatography

HCD:

Higher energy collision dissociation

HEPES:

2-(4-(2-hydroxyethyl)- 1-piperazinyl)-ethanesulfonicacid

LC-ESI-MS:

Liquid chromatography-electrospray ionization-mass spectrometry

LFQ:

Label free quantification

MS:

Mass spectrometry

m/z:

Mass/charge

NF:

Normalization factor

rH:

Hydrodynamic radius

PEG:

Polyethylene glycol

RSH:

Reactive sulfhydryl groups

RT:

Retention Time

TFA:

Trifluoroacetic acid

References

  1. H.M. Rawel, J. Kroll, S. Rohn, Reactions of phenolic substances with lysozyme — physicochemical characterisation and proteolytic digestion of the derivatives, Food Chem. 72, 59–71(2001) http://www.sciencedirect.com/science/article/pii/S0308814600002065.

  2. M. Collini, L. D’Alfonso, H. Molinari, L. Ragona, M. Catalano, G. Baldini, Competitive binding of fatty acids and the fluorescent probe 1-8-anilinonaphthalene sulfonate to bovine beta-lactoglobulin. Protein Sci. 12, 1596–1603 (2003). doi:10.1110/ps.0304403

    Article  CAS  Google Scholar 

  3. A. Shpigelman, G. Israeli, Y.D. Livney, Thermally-induced protein-polyphenol co-assemblies: beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG, Food Hydrocoll. 24, 735–743 (2011) http://www.sciencedirect.com/science/article/B6VP9-4YT6D9V-1/2/4ca30bb97971a654401eb48d0f14cb35.

  4. S.-Y. Wu, M.D. Pèrez, P. Puyol, L. Sawyer, ß-Lactoglobulin Binds Palmitate within Its Central Cavity;10.1074/jbc.274.1.170, J. Biol. Chem. 274, 170–174 (1999)http://www.jbc.org/content/274/1/170.abstract.

  5. X. Wu, R. Dey, H.U. Wu, Z. Liu, Q. He, X. Zeng, Studies on the interaction of -epigallocatechin-3-gallate from green tea with bovine β-lactoglobulin by spectroscopic methods and docking. Int. J. Dairy Technol. 66, 7–13 (2012)

    Article  Google Scholar 

  6. Y.D. Livney, Milk proteins as vehicles for bioactives, Curr. Opin. Colloid Interface Sci. 15, 73–83(2010) http://www.sciencedirect.com/science/article/B6VRY-4XRJX6S-1/2/632b0178768f55cbc9c783da7f8d46a1.

  7. H.M. Rawel, J. Kroll, I. Schröder, In Vitro Enzymatic Digestion of Benzyl- and Phenylisothiocyanate-Derivatized Food Proteins, J. Agric. Food Chem. 46, 5103–5109(1998) http://dx.doi.org/10.1021/jf980244r.

  8. H.M. Rawel, H. Ranters, S. Rohn, J. Kroll, Assessment of the reactivity of selected isoflavones against proteins in comparison to quercetin. J. Agric. Food Chem. 52, 5263–5271 (2004)

    Article  CAS  Google Scholar 

  9. K. Rade-Kukic, C. Schmitt, H.M. Rawel, Formation of conjugates between [beta]-lactoglobulin and allyl isothiocyanate: Effect on protein heat aggregation, foaming and emulsifying properties. Food Colloids 2010: On the Road from Interfaces to Consumers, Food Hydrocoll. 25, 694–706 (2011) http://www.sciencedirect.com/science/article/pii/S0268005X10002006.

  10. J.K. Keppler, T. Koudelka, K. Palani, M.C. Stuhldreier, F. Temps, A. Tholey, K. Schwarz, Characterization of the covalent binding of allyl isothiocyanate to β -lactoglobulin by fluorescence quenching, equilibrium measurement, and mass spectrometry, J. Biomol. Struct. Dyn.32, 1103-17 (2014) doi: 10.1080/07391102.2013.809605.

  11. Y. Zhang, Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol. Nutr. Food Res. 54, 127–135 (2010)

    Article  CAS  Google Scholar 

  12. M.Z. Papiz, L. Sawyer, E.E. Eliopoulos, A.C.T. North, J.B.C. Findlay, R. Sivaprasadarao, T.A. Jones, M.E. Newcomer, P.J. Kraulis, The structure of β-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324, 383–385 (1986)

    Article  CAS  Google Scholar 

  13. A.H. Palmer, The Preparation of a Chrystalline Globulin from the Albumin Fraction of Cow’s Milk, J. Biol. Chem. 104, 359–372 (1934) http://www.jbc.org/content/104/2/359.short.

  14. R. Aschaffenburg, J. Drewry, Improved method for the preparation of crystalline beta-lactoglobulin and alpha-lactalbumin from cow’s milk. Biochem. J. 65, 273–277 (1957)

    CAS  Google Scholar 

  15. L. Sawyer, G. Kontopidis, The core lipocalin, bovine [beta]-lactoglobulin, Biochimica et Biophysica Acta (BBA) - Protein Struct. Mol. Enzymol. 1482, 136–148 (2000) http://www.sciencedirect.com/science/article/B6T21-41HHN9X-H/2/cc73232c1860ad921ea3cf92a6b4795e.

  16. M.C. Bohin, J.-P. Vincken, H.T.W.M. van der Hijden, H. Gruppen, Efficacy of food proteins as carriers for flavonoids. J. Agric. Food Chem. 60, 4136–4143 (2012)

    Article  CAS  Google Scholar 

  17. J.K. Keppler, F.D. Sönnichsen, P.-C. Lorenzen, K. Schwarz, Differences in heat stability and ligand binding among b-lactoglobulin genetic variants A, B and C using (1)H NMR and fluorescence quenching. Biochim. Biophys. Acta 6, 1083–1093 (2014) doi:10.1016/j.bbapap.2014.02.007.

  18. M. Stojadinovic, Binding affinity between dietary polyphenols and β-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed, Food Chem. 136, 1263–1271 (2013) http://resolver.scholarsportal.info/resolve/03088146/v136i3-4/1263_babdpataaocf.xml.

  19. E.S. Basheva, T.D. Gurkov, N.C. Christov, B. Campbell, Interactions in oil/water/oil films stabilized by β-lactoglobulin; role of the surface charge, A Collection of Papers in Honor of Professor Ivan B. Ivanov (Laboratory of Chemical Physics and Engineering, University of Sofia) Celebrating his Contributions to Colloid and Surface Science on the Occasion of his 70th Birthday 282–283, 99–108 (2006) http://www.sciencedirect.com/science/article/pii/S0927775706000690.

  20. J.C. Knudsen, L.H. Øgendal, L.H. Skibsted, Droplet surface properties and rheology of concentrated Oil in water emulsions stabilized by heat-modified β-lactoglobulin B. Langmuir 24, 2603–2610 (2008)

    Article  CAS  Google Scholar 

  21. H.-J. Kim, E.A. Decker, D.J. McClements, Impact of protein surface denaturation on droplet flocculation in hexadecane Oil-in-water emulsions stabilized by β-lactoglobulin. J. Agric. Food Chem. 50, 7131–7137 (2002)

    Article  CAS  Google Scholar 

  22. P. Aymard, T. Nicolai, D. Durand, A. Clark, Static and Dynamic Scattering of b-Lactoglobulin Aggregates Formed after Heat-Induced Denaturation at pH 2, Macromolecules 32, 2542–2552 (1999) http://dx.doi.org/10.1021/ma981689j.

  23. M. Vittayanont, J.F. Steffe, S.L. Flegler, D.M. Smith, Gelling Properties of Heat-Denatured β-Lactoglobulin Aggregates in a High-Salt Buffer, J. Agric. Food Chem. 50, 2987–2992 (2002) http://dx.doi.org/10.1021/jf011410p.

  24. L. Liang, M. Subirade, Study of the acid and thermal stability of β-lactoglobulin–ligand complexes using fluorescence quenching. 6th International Conference on Water in Food, Food Chem. 132, 2023–2029 (2012) http://www.sciencedirect.com/science/article/pii/S0308814611018115.

  25. I.M. Reddy, N.K.D. Kella, J.E. Kinsella, Structural and conformational basis of the resistance of.beta.-lactoglobulin to peptic and chymotryptic digestion. J. Agric. Food Chem. 36, 737–741 (1988)

    Article  CAS  Google Scholar 

  26. G. Mandalari, K. Adel-Patient, V. Barkholt, C. Baro, L. Bennett, M. Bublin, S. Gaier, G. Graser, G. Ladics, D. Mierzejewska, E. Vassilopoulou, Y. Vissers, L. Zuidmeer, N. Rigby, L. Salt, M. Defernez, F. Mulholland, A. Mackie, M. Wickham, E. Mills, In vitro digestibility of β-casein and β-lactoglobulin under simulated human gastric and duodenal conditions: a multi-laboratory evaluation. Regul. Toxicol. Pharmacol. 55, 372–381 (2009)

    Article  CAS  Google Scholar 

  27. D.E.W. Chatterton, G. Smithers, P. Roupas, A. Brodkorb, Bioactivity of β-lactoglobulin and α-lactalbumin—Technological implications for processing, Technological and Health Aspects of Bioactive Components of Milk Technological and Health Aspects of Bioactive Components of Milk 16, 1229–1240 (2006) http://www.sciencedirect.com/science/article/pii/S0958694606001439.

  28. A.S. Yalcin, Emerging Therapeutic Potential of Whey Proteins and Peptides, Curr. Pharm. Des. 12, 1637–1643 (2006) http://www.ingentaconnect.com/content/ben/cpd/2006/00000012/00000013/art00008.

  29. G. Pepe, G.C. Tenore, R. Mastrocinque, P. Stusio, P. Campiglia, Potential anticarcinogenic peptides from bovine milk. J. Amino acids 2013, 939804 (2013)

    Article  Google Scholar 

  30. K.M. Järvinen, P. Chatchatee, L. Bardina, K. Beyer, H.A. Sampson, IgE and IgG binding epitopes on alpha-lactalbumin and beta-lactoglobulin in cow’s milk allergy. Int. Arch. Allergy Immunol. 126, 111–118 (2001)

    Article  Google Scholar 

  31. J. Leonil, D. Molle, J. Fauquant, J.L. Maubois, R.J. Pearce, S. Bouhallab, Characterization by Ionization Mass Spectrometry of Lactosyl β-Lactoglobulin Conjugates Formed During Heat Treatment of Milk and Whey and Identification of One Lactose-Binding Site, J. Dairy Sci. 80, 2270–2281 (1997) http://www.sciencedirect.com/science/article/pii/S0022030297761769.

  32. C.A. Dunlap, G.L. Côté, Beta-lactoglobulin-dextran conjugates: effect of polysaccharide size on emulsion stability. J. Agric. Food Chem. 53, 419–423 (2005)

    Article  CAS  Google Scholar 

  33. T.J. Wooster, M.A. Augustin, Beta-lactoglobulin-dextran Maillard conjugates: their effect on interfacial thickness and emulsion stability. J. Colloid Interface Sci. 303, 564–572 (2006)

    Article  CAS  Google Scholar 

  34. R. Björkman, Interaction between proteins and glucosinolate isothiocyanates and oxazolidinethiones from Brassica napus seed, Phytochemistry 12, 1585–1590 (1973) http://www.sciencedirect.com/science/article/pii/0031942273803723.

  35. A. Hinman, H.-H. Chuang, D.M. Bautista, D. Julius, TRP channel activation by reversible covalent modification. Proc. Natl. Acad. Sci. U. S. A. 103, 19564–19568 (2006)

    Article  CAS  Google Scholar 

  36. S. Kawakishi, T. Kaneko, Interaction of proteins with allyl isothiocyanate, J. Agric. Food Chem. 35, 85–88 (1987) doi:10.1021/jf00073a020/http://dx.doi.org/10.1021/jf00073a020.

  37. N.V. Kishore Kumar Murthy, M.S. Narasinga Rao, Interaction of allyl isothiocyanate with mustard 12S protein, J. Agric. Food Chem. 34, 448–452 (1986) doi:10.1021/jf00069a017/http://dx.doi.org/10.1021/jf00069a017.

  38. M. Ali, T. Homann, M. Khalil, H.-P. Kruse, H. Rawel, Milk whey protein modification by coffee-specific phenolics: effect on structural and functional properties. J. Agric. Food Chem. 61, 6911–6920 (2013)

    Article  CAS  Google Scholar 

  39. J.N. Losso, S. Nakai, Stabilization of oil-in-water emulsions by beta-lactoglobulin-polyethylene glycol conjugates. J. Agric. Food Chem. 50, 1207–1212 (2002)

    Article  CAS  Google Scholar 

  40. A. Pihlanto-Leppälä, Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides, Trends Food Sci. Technol. 11, 347–356 (2000) http://www.sciencedirect.com/science/article/pii/S0924224401000036.

  41. T. Cucu, B. de Meulenaer, B. Kerkaert, I. Vandenberghe, B. Devreese, MALDI based identification of whey protein derived tryptic marker peptides that resist protein glycation, Food Res. Int. 47, 23–30 (2012) http://www.sciencedirect.com/science/article/pii/S0963996911006727.

  42. F. Chevalier, J.-M. Chobert, D. Mollé, T. Haertlé, Maillard glycation of beta-lactoglobulin with several sugars: comparative study of the properties of the obtained polymers and of the substituted sites, Lait 81, 651–666 (2001) http://dx.doi.org/10.1051/lait:2001155.

  43. J. Wang, X.X. Li-Chan, J. Atherton, L. Deng, R. Espina, L. Yu, P. Horwatt, S. Ross, S. Lockhead, S. Ahmad, A. Chandrasekaran, A. Oganesian, J. Scatina, A. Mutlib, R. Talaat, Characterization of HKI-272 covalent binding to human serum albumin. Drug Metab. Dispos. 38, 1083–1093 (2010)

    Article  CAS  Google Scholar 

  44. M. Corzo-Martínez, R. Lebrón-Aguilar, M. Villamiel, J.E. Quintanilla-López, F.J. Moreno, Application of liquid chromatography–tandem mass spectrometry for the characterization of galactosylated and tagatosylated β-lactoglobulin peptides derived from in vitro gastrointestinal digestion, Adv. Sep. Methods Food Anal. 1216, 7205–7212 (2009) http://www.sciencedirect.com/science/article/pii/S0021967309012606.

  45. F.J. Moreno, J.E. Quintanilla-López, R. Lebrón-Aguilar, A. Olano, M.L. Sanz, Mass Spectrometric Characterization of Glycated β-Lactoglobulin Peptides Derived from Galacto-oligosaccharides Surviving the In Vitro Gastrointestinal Digestion, J. Am. Soc. Mass Spectrom. 19, 927–937 (2008) http://www.sciencedirect.com/science/article/pii/S1044030508002675.

  46. K. Cejpek, J. Valusek, J. Velisek, Reactions of Allyl Isothiocyanate with Alanine, Glycine, and Several Peptides in Model Systems, J. Agric. Food Chem. 48, 3560–3565 (2000) doi:10.1021/jf991019s/http://dx.doi.org/10.1021/jf991019s.

  47. J-L. Maubois, J. Fauquant, M. H., Famelart, F. Caussin, Milk microfiltrate, a convenient starting material for fractionation of whey proteins and derivatives, in: G. Andersen, 2. M. International Whey Conference 3 (Eds.), The importance of whey and whey components in food and nutrition. Proceedings of the 3rd International Whey Conference Munich 2001, Behr’s Verlag, Hamburg, pp. 59–72 (2001).

  48. V. Schnaible, M. Przybylski, Identification of Fluorescein-5′-Isothiocyanate-Modification Sites in Proteins by Electrospray-Ionization Mass Spectrometry, Bioconjugate Chem 10, 861–866 (1999) http://dx.doi.org/http://dx.doi.org/10.1021/bc990039x.

  49. F. Morgan, Saı̈d, D. Mollé, G. Henry, J.-L. Maubois, J. Léonil, Lactolation of β-Lactoglobulin Monitored by Electrospray Ionisation Mass Spectrometry, Int. Dairy J. 8, 95–98(1998) http://www.sciencedirect.com/science/article/pii/S0958694698000259.

  50. V. Fogliano, S.M. Monti, A. Visconti, G. Randazzo, A.M. Facchiano, G. Colonna, A. Ritieni, Identification of a β-lactoglobulin lactosylation site, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1388, 295–304 (1998) http://www.sciencedirect.com/science/article/pii/S0167483898001770.

  51. F. Fenaille, F. Morgan, V. Parisod, J.-C. Tabet, P.A. Guy, Solid-state glycation of β-lactoglobulin by lactose and galactose: localization of the modified amino acids using mass spectrometric techniques, J. Mass Spectrom. 39, 16–28. (2004) http://dx.doi.org/10.1002/jms.539.

  52. C.Y. Song, W.L. Chen, M.C. Yang, J.P. Huang, S.J. Mao, Epitope mapping of a monoclonal antibody specific to bovine dry milk. Involvement of residues 66–76 of strand D in thermal denatured beta-lactoglobulin. J.Biol. Chem. 280, 3574–3582 (2005)

    Article  CAS  Google Scholar 

  53. F. Morgan, J. Léonil, D. Mollé, S. Bouhallab, Nonenzymatic lactosylation of bovine beta-lactoglobulin under mild heat treatment leads to structural heterogeneity of the glycoforms. Biochem. Biophys. Res. Commun. 236, 413–417 (1997)

    Article  CAS  Google Scholar 

  54. T. Nakamura, Y. Kawai, N. Kitamoto, T. Osawa, Y. Kato, Covalent modification of lysine residues by allyl isothiocyanate in physiological conditions: plausible transformation of isothiocyanate from thiol to amine. Chem. Res. Toxicol. 22, 536–542 (2009)

    Article  CAS  Google Scholar 

  55. E. Bordini, M. Hamdan, Investigation of some covalent and noncovalent complexes by matrix-assisted laser desorption/ionization time-of-flight and electrospray mass spectrometry, Rapid Commun. Mass Spectrom. 13, 1143–1151 (1999) http://dx.doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1143:AID-RCM626>3.0.CO;2-J.

  56. M. Chiari, P.G. Righetti, A. Negri, F. Ceciliani, S. Ronchi, Preincubation with cysteine prevents modification of sulfhydryl groups in proteins by unreacted acrylamide in a gel. Electrophoresis 13, 882–884 (1992)

    Article  CAS  Google Scholar 

  57. O. Curcuruto, E. Bordini, L. Rovatti, M. Hamdan, Liquid chromatography/tandem mass spectrometry to monitor acrylamide adducts with bovine β-lactoglobulin B, Rapid Commun. Mass Spectrom. 12, 1494–1500 (1998) http://dx.doi.org/10.1002/(SICI)1097-0231(19981030)12:20<1494:AID-RCM354>3.0.CO;2-K .

  58. M.A.M. Hoffmann, P.J.J.M. van Mil, Heat-induced aggregation of β-lactoglobulin: role of the free thiol group and disulfide bonds. J. Agric. Food Chem. 45, 2942–2948 (1997)

    Article  CAS  Google Scholar 

  59. F. Chevalier, J.-M. Chobert, M. Dalgalarrondo, T. Haertlé, Characterization Of The Maillard Reaction Products Of β-Lactoglobulin Glucosylated In Mild Conditions, J. Food Biochem. 25, 33–55 (2001) http://dx.doi.org/10.1111/j.1745-4514.2001.tb00723.x.

  60. D. Mollé, F. Morgan, S. Bouhallab, J. Léonil, Selective detection of lactolated peptides in hydrolysates by liquid chromatography/electrospray tandem mass spectrometry. Anal. Biochem. 259, 152–161 (1998)

    Article  Google Scholar 

  61. A. Pihlanto-Leppälä, T. Rokka, H. Korhonen, Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Bovine Milk Proteins, Int. Dairy J. 8, 325–331 (1998) http://www.sciencedirect.com/science/article/pii/S095869469800048X.

  62. S. Nagaoka, Y. Futamura, K. Miwa, T. Awano, K. Yamauchi, Y. Kanamaru, K. Tadashi, T. Kuwata, Identification of Novel Hypocholesterolemic Peptides Derived from Bovine Milk β-Lactoglobulin, Biochem. Biophys. Res. Commun. 281, 11–17 (2001) http://www.sciencedirect.com/science/article/pii/S0006291X01942986.

Download references

Acknowledgments

This project was funded by the BMBF program FOCUS, TP 5.3 (ProteoMod) and TP 3.4 (LactoTrans) and SFB877 (Project Z2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Katharina Keppler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

Peptides identified in β-LG native or modified with different concentrations of AITC by LC-ESI-MS2 after tryptic digestion. All modified amino acids are marked in bold with an asterisk. Where modified amino acid could not be identified unambiguously, the whole peptide sequence is marked in brackets and an asterisk. Only those peptides that were identified in at least two of the three biological replicates are listed. A.U. = Arbitrary Units, No = Number, RT = retention time, SEM = Standard error mean. (DOCX 38 kb)

Table 2

Peptides identified in β-LG native or modified with different concentrations of AITC by LC-ESI-MS2 after chymotryptic digestion. Modified amino acids are marked in bold and with an asterisk. Only those peptides that were identified in at least two of the three biological replicates were listed. Where modified amino acid could not be identified unambiguously, the whole peptide sequence is marked in brackets and an asterisk. A.U. = Arbitrary Units, No = Number, RT = retention time, SEM = Standard error mean. (DOCX 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keppler, J.K., Koudelka, T., Palani, K. et al. Interaction of β-Lactoglobulin with Small Hydrophobic Ligands - Influence of Covalent AITC Modification on β-LG Tryptic Cleavage. Food Biophysics 9, 349–358 (2014). https://doi.org/10.1007/s11483-014-9361-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-014-9361-4

Keywords

Navigation