Skip to main content
Log in

Water at Biological and Inorganic Interfaces

  • Special Issue Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

We analyze the role of water at biological and inorganic interfaces. In fields like food processing, food preservation or bionanotechnology the fluctuations in density and entropy due to hydration water have consequences that go from damaging the tissues to reducing the cell death for dehydration to regulating the food stability to controlling the heat-exchange at the nanoscale. We focus on the thermodynamics of hydration water at cryopreservation temperatures and its effects on the dynamics of nano-confined and protein-hydration water. We consider the relevance of confining heterogeneities for controlling the physical properties of hydration water and the effects of interfacial water on protein stability. To this aim, we describe a coarse-grained model of water that allows us to perform theoretical calculations and numerical simulations, presenting our latest results and the work in progress. Our investigation is at the frontier of knowledge in Physics, Chemistry and Biology, with a potential impact on fields such as Nanoscience, Nanotechnology and Food Science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.W. Kern, M. Karplus, Water, A Comprehensive Treatise, vol. 1 (Plenum Press, New York, 1972), pp. 21–91

    Google Scholar 

  2. G. Franzese, M. Rubi, Aspects of Physical Biology, Biological Water, Protein Solutions, Transport and Replication. Lecture Notes in Physics, vol. 752 (Springer, Berlin/Heidelberg, 2008)

    Google Scholar 

  3. P. Ball, Life’s, Matrix, A Biography of Water (Farrar, Straus and Giroux, New York, 2000)

    Google Scholar 

  4. S. Zou, J.S. Baskin, A.H. Zewail, Molecular recognition of oxygen by protein mimics: dynamics on the femtosecond to microsecond time scale. Proc. Natl. Acad. Sci. USA 99, 9625–9630 (2002)

    Article  CAS  Google Scholar 

  5. P. Ball, Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008)

    Article  CAS  Google Scholar 

  6. K.A. Dill, T.M. Truskett, V. Vlachy, B. Hribar-Lee, Modeling water, the hydrophobic effect, ion solvation. Annu. Rev. Biophys. Biomol. 34, 173–199 (2005)

    Article  CAS  Google Scholar 

  7. L.D. Barron, L. Hecht, G. Wilson, The lubricant of life: a proposal that solvent water promotes extremely fast conformational fluctuations in mobile heteropolypeptide structure. Biochemistry 36, 13143–13147 (1997)

    Article  Google Scholar 

  8. V. Kurkal-Siebert, R. Agarwal, J.C. Smith, Hydration-dependent dynamical transition in protein: protein interactions at ∼ 240 K. Phys. Rev. Lett. 100, 138102 (2008)

    Article  CAS  Google Scholar 

  9. P. Ball, Water: water—an enduring mystery. Nature 452(7185), 291–292 (2008)

    Article  CAS  Google Scholar 

  10. P.G. Debenedetti, H.E. Stanley, Supercooled and glassy water. Phys. Today 56, 40–46 (2003)

    Article  Google Scholar 

  11. W.L. Rosenfeld, D. Woodley, Deep convective clouds with sustained supercooled liquid water down to −37. 5°. Nature 405, 440–442 (2000)

    Article  Google Scholar 

  12. P.G. Debenedetti, Metastable Liquids. Concepts and Principles (Princeton University Press, Princeton, 1996)

    Google Scholar 

  13. B.M. Cwilong, Sublimation in a wilson chamber. Proc. R. Soc. Lond. A Mat. 190, 137–143 (1947)

    Article  Google Scholar 

  14. H. Kanno, R.J. Speedy, C.A. Angell, Supercooling of water to −92°C under pressure. Science 189, 880–881 (1975)

    Article  Google Scholar 

  15. C.A. Angell, Insights into phases of liquid water from study of its unusual glass-forming properties. Science 319, 582–587 (2008)

    Article  CAS  Google Scholar 

  16. P. Needham, Hydrogen bonding: homing in on a tricky chemical concept. Stud. Hist. Philos. Sci. A 44, 51–65 (2013)

    Article  Google Scholar 

  17. J. Poater, X. Fradera, M. Sol, M. Duran, S. Simon, On the electron-pair nature of the hydrogen bond in the framework of the atoms in molecules theory. Chem. Phys. Lett. 369, 248–255 (2003)

    Article  Google Scholar 

  18. E.D. Isaacs, A. Shukla, P.M. Platzman, D.R. Hamann, B. Barbiellini, C.A. Tulk, Compton scattering evidence for covalency of the hydrogen bond in ice. J. Phys. Chem. Solids 61, 403–406 (2000)

    Article  Google Scholar 

  19. A.K. Soper, M.A. Ricci, Structures of high-density and low-density water. Phys. Rev. Lett. 84, 2881–2884 (2000)

    Article  Google Scholar 

  20. E.A. Zheligovskaya, G.G. Malenkov, Crystalline water ices. Russ. Chem. Rev. 75, 57–76 (2006)

    Article  CAS  Google Scholar 

  21. T. Loerting, N. Giovambattista, Amorphous ice: experiments and numerical simulation. J. Phys. Condens. Matter 18, R919–R977 (2006)

    Article  CAS  Google Scholar 

  22. K. Amann-Winkel, F. Löw, P.H. Handle, W. Knoll, J. Peters, B. Geil, F. Fujaraband, T. Loerting, Limits of metastability in amorphous ices: the neutron scattering Debye-Waller factor. Phys. Chem. Chem. Phys. 14, 16386–16391 (2012)

    Article  CAS  Google Scholar 

  23. P.H. Poole, F. Sciortino, U. Essmann, H.E. Stanley, Phase-behavior of metastable water. Nature 360, 324–328 (1992)

    Article  Google Scholar 

  24. H. Tanaka, A self-consistent phase diagram for supercooled water. Nature 380, 328 (1996)

    Article  Google Scholar 

  25. L. Xu, P. Kumar, S.V. Buldyrev, S.-H. Chen, P.H. Poole, F. Sciortino, H.E. Stanley, Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition. Proc. Natl. Acad. Sci. USA 102, 16558–16562 (2005)

    Article  CAS  Google Scholar 

  26. G. Franzese, H.E. Stanley, The widom line of supercooled water. J. Phys. Condens. Matter 19, 205126 (2007)

    Article  CAS  Google Scholar 

  27. R.J. Speedy, Limiting forms of the thermodynamic divergences at the conjectured stability limits in superheated and supercooled water. J. Phys. Chem. 86, 3002–3005 (1982)

    Article  Google Scholar 

  28. P.G. Debenedetti, Supercooled and glassy water. J. Phys. Condens. Matter 15, R1669–R1726 (2003)

    Article  Google Scholar 

  29. P.G. Debenedetti, M.C. D’Antonio, Stability and tensile strength of liquids exhibiting density maxima. AIChE J. 34, 447–455 (1988)

    Article  Google Scholar 

  30. P.H. Poole, F. Sciortino, T. Grande, H.E. Stanley, C.A. Angell, Effect of hydrogen bonds on the thermodynamic behavior of liquid water. Phys. Rev. Lett. 73, 1632–1635 (1994)

    Article  Google Scholar 

  31. H. Tanaka, Phase behaviors of supercooled water: reconciling a critical point of amorphous ices with spinodal instability. J. Chem. Phys. 105, 5099–5111 (1996)

    Article  Google Scholar 

  32. D. Paschek, A. Rüppert, A. Geiger, Thermodynamic and structural characterization of the transformation from a metastable low-density to a very high-density form of supercooled TIP4P-ew model water. Chem. Phys. Chem. 9, 2737–2741 (2008)

    Article  CAS  Google Scholar 

  33. Y. Liu, A.Z. Panagiotopoulos, P.G. Debenedetti, Low-temperature fluid-phase behavior of ST2 water. J. Chem. Phys. 131, 104508 (2009)

    Article  CAS  Google Scholar 

  34. J.L.F. Abascal, C. Vega, Widom line and the liquid-liquid critical point for the TIP4P/2005 water model. J. Chem. Phys. 133, 234502 (2010)

    Article  CAS  Google Scholar 

  35. Y. Liu, J.C. Palmer, A.Z. Panagiotopoulos, P.G. Ebenedetti, Liquid-liquid transition in ST2 water. J. Chem. Phys. 137, 214505 (2012)

    Article  CAS  Google Scholar 

  36. T. Kesselring, G. Franzese, S.V. Buldyrev, H. Herrmann, H.E. Stanley, Nanoscale dynamics of phase flipping in water near its hypothesized liquid-liquid critical point. Sci. Rep. 2, 474 (2012)

    Article  CAS  Google Scholar 

  37. P.H. Poole, R.K. Bowles, I. Saika-Voivod, F. Sciortino, Free energy surface of ST2 water near the liquid-liquid phase transition. J. Chem. Phys. 138, 034505–7 (2013)

    Article  CAS  Google Scholar 

  38. S. Sastry, P.G. Debenedetti, F. Sciortino, H.E. Stanley, Singularity-free interpretation of the thermodynamics of supercooled water. Phys. Rev. E 53, 6144–6154 (1996)

    Article  Google Scholar 

  39. V. Holten, D.T. Limmer, V. Molinero, M.A. Anisimov, Nature of the anomalies in the supercooled liquid state of the mW model of water. J. Chem. Phys. 138, 174501 (2013)

    Article  CAS  Google Scholar 

  40. V. Molinero, E.B. Moore, Water modeled as an intermediate element between carbon and silicon. J. Phys. Chem. B 113, 4008–4016 (2009)

    Article  CAS  Google Scholar 

  41. D.T. Limmer, D. Chandler, The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. J. Chem. Phys. 135, 134503 (2011)

    Article  CAS  Google Scholar 

  42. F.H. Stillinger, A. Rahman, Improved simulation of liquid water by molecular-dynamics. J. Chem. Phys. 60, 1545 (1974)

    Article  Google Scholar 

  43. F. Sciortino, I. Saika-Voivod, P.H. Poole, Study of the ST2 model of water close to the liquid-liquid critical point. Phys. Chem. Chem. Phys. 13, 19759–19764 (2011)

    Article  CAS  Google Scholar 

  44. P.H. Poole, S.R. Becker, F. Sciortino, F.W. Starr, Dynamical behavior near a liquid–liquid phase transition in simulations of supercooled water. J. Phys. Chem. B 115, 14176–14183 (2011)

    Article  CAS  Google Scholar 

  45. T.A. Kesselring, G. Franzese, S.V. Buldyrev, H.J. Herrmann, H.E. Stanley, Nanoscale dynamics of phase flipping in water near its hypothesized liquid-liquid critical point. Sci. Rep. 2, 474 (2012)

    Article  CAS  Google Scholar 

  46. E. Lascaris, T.A. Kesselring, G. Franzese, S.V. Buldyrev, H.J. Herrmann, H.E. Stanley, in Response Functions Near the Liquid-Liquid Critical Point of ST2 Water. AIP Conf. Proc. 1, 4th International Symposium on Slow Dynamics in Complex Systems, vol. 1518, pp. 520–526 (2013)

  47. E. Lascaris, T.A. Kesselring, G. Franzese, S.V. Buldyrev, H.J. Herrmann, H.E. Stanley, in Response Functions Near the Liquid-Liquid Critical Point of ST2 Water. AIP Conf. Proc. 1, 4th International Symposium on Slow Dynamics in Complex Systems, vol. 1518, pp. 520–526 (2013)

  48. K. Stokely, M.G. Mazza, H.E. Stanley, G. Franzese, Effect of hydrogen bond cooperativity on the behavior of water. Proc. Natl. Acad. Sci. USA 107, 1301–1306 (2010)

    Article  Google Scholar 

  49. A. Faraone, L. Liu, C.-Y. Mou, C.-W. Yen, S.-H. Chen, Fragile-to-strong liquid transition in deeply supercooled confined water. J. Chem. Phys. 121, 10843–10846 (2004)

    Article  CAS  Google Scholar 

  50. L. Liu, S.-H. Chen, A. Faraone, C.-W. Yen, C.-Y. Mou, Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys. Rev. Lett. 95, 117802 (2005)

    Article  CAS  Google Scholar 

  51. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, U. Wanderlingh, L. Liu, C.-Y. Mou, S.-H. Chen, The fragile-to-strong dynamic crossover transition in confined water, nuclear magnetic resonance results. J. Chem. Phys. 124, 161102 (2006)

    Article  CAS  Google Scholar 

  52. S.-H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone, E. Mamontov, Observation of fragile-to-strong dynamic crossover in protein hydration water. Proc. Natl. Acad. Sci. USA 103, 9012–9016 (2006)

    Article  CAS  Google Scholar 

  53. E. Mamontov, Observation of fragile-to-strong liquid transition in surface water in CeO2. J. Chem. Phys. 123, 171101 (2005)

    Article  CAS  Google Scholar 

  54. H. Jansson, W.S. Howells, J. Swenson, Dynamics of fresh and freeze-dried strawberry and red onion by quasielastic neutron scattering. J. Phys. Chem. B 110, 13786–13792 (2006)

    Article  CAS  Google Scholar 

  55. S.-H. Chen, L. Liu, X. Chu, Y. Zhang, E. Fratini, P. Baglioni, A. Faraone, E. Mamontov, Experimental evidence of fragile-to-strong dynamic crossover in DNA hydration water. J. Chem. Phys. 125, 171103 (2006)

    Article  CAS  Google Scholar 

  56. X.Q. Chu, E. Fratini, P. Baglioni, A. Faraone, S.-H. Chen, Observation of a dynamic crossover in rna hydration water which triggers a dynamic transition in the biopolymer. Phys. Rev. E 77, 011908 (2008)

    Article  CAS  Google Scholar 

  57. G. Franzese, K. Stokely, X.-Q. Chu, P. Kumar, M.G. Mazza, S.-H. Chen, H.E. Stanley, Pressure effects in supercooled water, comparison between a 2d model of water and experiments for surface water on a protein. J. Phys. Condens. Matter 20, 494210 (2008)

    Article  CAS  Google Scholar 

  58. R. Bergman, J. Swenson, Dynamics of supercooled water in confined geometry. Nature 403, 283–286 (2000)

    Article  CAS  Google Scholar 

  59. S. Cerveny, J. Colmenero, A. Alegría, Comment on “pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water”. Phys. Rev. Lett. 97, 189802 (2006)

    Article  CAS  Google Scholar 

  60. J. Swenson, Comment on “pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water”. Phys. Rev. Lett. 97, 189801 (2006)

    Article  CAS  Google Scholar 

  61. S. Pawlus, S. Khodadadi, A.P. Sokolov, Conductivity in hydrated proteins: no signs of the fragile-to-strong crossover. Phys. Rev. Lett. 100, 108103 (2008)

    Article  CAS  Google Scholar 

  62. M. Vogel, Origins of apparent fragile-to-strong transitions of protein hydration waters. Phys. Rev. Lett. 101, 225701 (2008)

    Article  CAS  Google Scholar 

  63. Y. Zhang, A. Faraone, W.A. Kamitakahara, K.-H. Liu, C.-Y. Mou, J.B. Leão, S. Chang, S.-H. Chen, Density hysteresis of heavy water confined in a nanoporous silica matrix. Proc. Natl. Acad. Sci. USA 108, 12206–12211 (2011)

    Article  Google Scholar 

  64. A.K. Soper, Density minimum in supercooled confined water. Proc. Natl. Acad. Sci. USA 108, E1192 (2011)

    Article  CAS  Google Scholar 

  65. Y. Zhang, A. Faraone, W.A. Kamitakahara, K.-H. Liu, C.-Y. Mou, J.B. Leão, S. Chang, S.-H. Chen,Reply to Soper, “Density measurement of confined water with neutron scattering”. Proc. Natl. Acad. Sci. USA 108, E1193–E1194 (2011)

    Article  CAS  Google Scholar 

  66. P.W. Fenimore, H. Frauenfelder, B.H. McMahon, R.D. Young, Bulk-solvent and hydration–shell fluctuations, similar to α- and β–fluctuations in glasses, control protein motions and functions. Proc. Natl. Acad. Sci. USA 101, 14408–14413 (2004)

    Article  Google Scholar 

  67. P.W. Fenimore, H. Frauenfelder, B.H. McMahon, R.D. Young, Proteins are paradigms of stochastic complexity. Phys. A 351, 1–13 (2005)

    Article  CAS  Google Scholar 

  68. V. Lubchenko, P.G. Wolynes, H. Frauenfelder, Mosaic energy landscapes of liquids and the control of protein conformational dynamics by glass-forming solvents. J. Phys. Chem. B 109, 7488–7499 (2005)

    Article  CAS  Google Scholar 

  69. J. Swenson, H. Jansson, R. Bergman, Relaxation processes in supercooled confined water and implications for protein dynamics. Phys. Rev. Lett. 96, 247802 (2006)

    Article  CAS  Google Scholar 

  70. A. Oleinikova, N. Smolin, I. Brovchenko, Origin of the dynamic transition upon pressurization of crystalline proteins. J. Phys. Chem. B 110, 19619–19624 (2006)

    Article  CAS  Google Scholar 

  71. I. Brovchenko, A. Krukau, A. Oleinikova, A.K. Mazur, Water percolation governs polymorphic transitions and conductivity of DNA. Phys. Rev. Lett. 97, 137801–4 (2006)

    Article  CAS  Google Scholar 

  72. L. Zhang, L. Wang, Y.-T. Kao, W. Qiu, Y. Yang, O. Okobiah, D. Zhong, From the cover: mapping hydration dynamics around a protein surface. Proc. Natl. Acad. Sci. USA 104, 18461–18466 (2007)

    Article  Google Scholar 

  73. D. Liu, X.-q. Chu, M. Lagi, Y. Zhang, E. Fratini, P. Baglioni, A. Alatas, A. Said, E. Alp, S.-H. Chen,Studies of phononlike low–energy excitations of protein molecules by inelastic x-ray scattering. Phys. Rev. Lett. 101, 13 (2008)

    Google Scholar 

  74. J.M. Zanotti, G. Gibrat, M.C. Bellissent-Funel, Hydration water rotational motion as a source of configurational entropy driving protein dynamics. Crossovers at 150 and 220 K. Phys. Chem. Chem. Phys. 10, 4865–4870 (2008)

    Article  CAS  Google Scholar 

  75. P. Kumar, Z. Yan, L. Xu, M.G. Mazza, S.V. Buldyrev, S.-H. Chen, S. Sastry, H.E. Stanley, Glass transition in biomolecules and the liquid-liquid critical point of water. Phys. Rev. Lett. 97, 177802 (2006)

    Article  CAS  Google Scholar 

  76. I. Brovchenko, A. Geiger, A. Oleinikova, Multiple liquid–liquid transitions in supercooled water. J. Chem. Phys. 118, 9473–9476 (2003)

    Article  CAS  Google Scholar 

  77. G.E. Brown, V.E. Henrich, W.H. Casey, D.L. Clark, C. Eggleston, A. Felmy, D.W. Goodman, M. Grätzel, G. Maciel, M.I. McCarthy, K.H. Nealson, D.A. Sverjensky, M.F. Toney, J.M. Zachara, Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 99, 77–174 (1999)

    Article  CAS  Google Scholar 

  78. P. Jungwirth, B.J. Finlayson-Pitts, D.J. Tobias, Introduction: structure and chemistry at aqueous interfaces. Chem. Rev. 106, 1137–1139 (2006)

    Article  CAS  Google Scholar 

  79. N. Ji, V. Ostroverkhov, C.S. Tian, Y.R. Shen, Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy. Phys. Rev. Lett. 100, 096102 (2008)

    Article  CAS  Google Scholar 

  80. S.J. Marrink, M. Berkowitz, H.J.C. Berendsen, Molecular dynamics simulation of a membrane/water interface: the ordering of water and its relation to the hydration force. Langmuir 9, 3122–3131 (1993)

    Article  Google Scholar 

  81. F. Zhou, K. Schulten, Molecular dynamics study of a membrane-water interface. J. Phys. Chem. 99, 2194–2207 (1995)

    Article  Google Scholar 

  82. A. Poynor, L. Hong, I.K. Robinson, S. Granick, Z. Zhang, P.A. Fenter, How water meets a hydrophobic surface. Phys. Rev. Lett. 97, 266101 (2006)

    Article  CAS  Google Scholar 

  83. B.M. Ocko, A. Dhinojwala, J. Daillant, Comment on “how water meets a hydrophobic surface”. Phys. Rev. Lett. 101, 039601 (2008)

    Article  CAS  Google Scholar 

  84. A. Poynor, L. Hong, I.K. Robinson, S. Granick, P.A. Fenter, Z. Zhang, Poynor et al. reply. Phys. Rev. Lett. 101, 039602 (2008)

    Article  CAS  Google Scholar 

  85. O. Chara, A.N. McCarthy, C.G. Ferrara, E.R. Caffarena, J.R. Grigera, Water behavior in the neighborhood of hydrophilic and hydrophobic membranes: lessons from molecular dynamics simulations. Phys. A 388, 4551–4559 (2009)

    Article  CAS  Google Scholar 

  86. S. Granick, S.C. Bae, Chemistry: a curious antipathy for water. Science 322, 1477–1478 (2008)

    Article  Google Scholar 

  87. X. Gao, L. Jiang, Biophysics: water-repellent legs of water striders. Nature 432, 36–36 (2004)

    Article  CAS  Google Scholar 

  88. P. Liu, X. Huang, R. Zhou, B.J. Berne, Observation of a dewetting transition in the collapse of the melittin tetramer. Nature 437, 159–162 (2005)

    Article  CAS  Google Scholar 

  89. D.M. Huang, D. Chandler, Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding. Proc. Natl. Acad. Sci. USA 97, 8324–8327 (2000)

    Article  Google Scholar 

  90. V. Bianco, S. Iskrov, G. Franzese, Understanding the role of hydrogen bonds on water dynamics and protein stability. J. Biol. Phys. 38, 27–48 (2011)

    Article  CAS  Google Scholar 

  91. G. Franzese, V. Bianco, S. Iskrov, Water at interface with proteins. Food Biophys. 6, 186–198 (2011)

    Article  Google Scholar 

  92. S. Nakai, E.-L. Chan, Hydrophobic Interactions in Food Systems (CRC Press, Boca Raton, 1988)

    Google Scholar 

  93. M. Le Meste, G. Roudaut, D. Champion, G. Blond, D. Simatos, in Ingredient Interactions: Effects on Food Quality, ed. by A.G. Gaonkar, A. McPherson. Interaction of Water with Food Components. CRC Press (2005), Press and references therein

  94. R. Patil, S. Das, A. Stanley, L. Yadav, A. Sudhakar, A.K. Varma, Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS ONE 5, e12029 (2010)

    Article  CAS  Google Scholar 

  95. D.A. Doshi, E.B. Watkins, J.N. Israelachvili, J. Majewski, Reduced water density at hydrophobic surfaces: effect of dissolved gases. Proc. Natl. Acad. Sci. USA 102, 9458–9462 (2005)

    Article  CAS  Google Scholar 

  96. Z. Ge, D.G. Cahill, P.V. Braun, Thermal conductance of hydrophilic and hydrophobic interfaces. Phys. Rev. Lett. 96, 186101 (2006)

    Article  CAS  Google Scholar 

  97. L.B.R. Castro, A.T. Almeida, D.F.S. Petri, The effect of water or salt solution on thin hydrophobic films. Langmuir 20, 7610–7615 (2004)

    Article  CAS  Google Scholar 

  98. Y. Takata, J.-H.J. Cho, B.M. Law, M. Aratono, Ellipsometric search for vapor layers at liquid-hydrophobic solid surfaces. Langmuir 22, 1715–1721 (2006)

    Article  CAS  Google Scholar 

  99. M. Mao, J. Zhang, R.-H. Yoon, W.A. Ducker, Is there a thin film of air at the interface between water and smooth hydrophobic solids? Langmuir 20, 1843–1849 (2004)

    Article  CAS  Google Scholar 

  100. Y.-S. Seo, S. Satija, No intrinsic depletion layer on a polystyrene thin film at a water interface. Langmuir 22, 7113–7116 (2006)

    Article  CAS  Google Scholar 

  101. J.W.G. Tyrrell, P. Attard, Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett. 87, 176104 (2001)

    Article  CAS  Google Scholar 

  102. N. Ishida, T. Inoue, M. Miyahara, K. Higashitani, Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir 16, 6377–6380 (2000)

    Article  CAS  Google Scholar 

  103. E.A. Vogler, Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interf. 74, 69–117 (1998)

    Article  Google Scholar 

  104. M.-C. Bellissent-Funel, Water near hydrophilic surfaces. J. Mol. Liq. 96, 287–304 (2002)

    Article  Google Scholar 

  105. R.C. Major, J.E. Houston, M.J. McGrath, J.I. Siepmann, X.-Y. Zhu, Viscous water meniscus under nanoconfinement. Phys. Rev. Lett. 96, 177803 (2006)

    Article  CAS  Google Scholar 

  106. T.-D. Li, J. Gao, R. Szoszkiewicz, U. Landman, E. Riedo, Structured and viscous water in subnanometer gaps. Phys. Rev. B 75, 115415 (2007)

    Article  CAS  Google Scholar 

  107. L.F. Boesel, R.L. Reis, The effect of water uptake on the behaviour of hydrophilic cements in confined environments. Biomaterials 27, 5627–5633 (2006)

    Article  CAS  Google Scholar 

  108. F. Bresme, E. Chacón, P. Tarazona, K. Tay, Intrinsic structure of hydrophobic surfaces: the oil-water interface. Phys. Rev. Lett. 101, 056102 (2008)

    Article  CAS  Google Scholar 

  109. N. Giovambattista, C.F. Lopez, P.J. Rossky, P.G. Debenedetti, Hydrophobicity of protein surfaces, Separating geometry from chemistry. Proc. Natl. Acad. Sci. USA 105, 2274–2279 (2008)

    Article  Google Scholar 

  110. G. Franzese, M. Yamada, H.E. Stanley, Hydrogen-bonded liquids: effects of correlations of orientational degrees of freedom. AIP Conf. Proc. 519, 281–287 (2000)

    Article  Google Scholar 

  111. G. Franzese, H.E. Stanley, Liquid-liquid critical point in a hamiltonian model for water: analytic solution. J. Phys. Condens. Matter 14, 2201–2209 (2002)

    Article  Google Scholar 

  112. G. Franzese, H.E. Stanley, A theory for discriminating the mechanism responsible for the water density anomaly. Phys. A 314, 508–513 (2002)

    Article  Google Scholar 

  113. G. Franzese, M.I. Marques, H.E. Stanley, Intramolecular coupling as a mechanism for a liquid-liquid phase transition. Phys. Rev. E 67, 011103 (2003)

    Article  CAS  Google Scholar 

  114. P. Kumar, G. Franzese, S.V. Buldyrev, H.E. Stanley, Dynamics of Water at Low Temperatures and Implications for Biomolecules. Aspects of Physical Biology, vol. 752 of Lecture Notes in Physics (Springer, 2008), pp. 3–22

  115. P. Kumar, G. Franzese, H.E. Stanley, Dynamics and thermodynamics of water. J. Phys. Condens. Matter 20, 244114 (2008)

    Article  CAS  Google Scholar 

  116. P. Kumar, G. Franzese, H.E. Stanley, Predictions of dynamic behavior under pressure for two scenarios to explain water anomalies. Phys. Rev. Lett. 100, 105701 (2008)

    Article  CAS  Google Scholar 

  117. G. Franzese, F. de los Santos, Dynamically slow processes in supercooled water confined between hydrophobic plates. J. Phys. Condens. Matter 21, 504107 (2009)

    Article  CAS  Google Scholar 

  118. M.G. Mazza, K. Stokely, E.G. Strekalova, H.E. Stanley, G. Franzese, Cluster monte carlo and numerical mean field analysis for the water liquid-liquid phase transition. Comput. Phys. Commun. 180, 497–502 (2009)

    Article  CAS  Google Scholar 

  119. F. de los Santos, G. Franzese, in Influence of Intramolecular Couplings in a Model for Hydrogen-Bonded Liquids. Proceedings of Modeling and Simulation of New Materials, vol. 1091 of AIP, Granada (Spain, 2009), pp. 185–197

  120. G. Franzese, A.H. Martínez, P. Kumar, M.G. Mazza, K. Stokely, E.G. Strekalova, F. de los Santos, H.E. Stanley, Phase transitions and dynamics of bulk and interfacial water. J. Phys. Condens. Matter 22, 284103 (2010)

    Article  CAS  Google Scholar 

  121. K. Stokely, M.G. Mazza, H.E. Stanley, G. Franzese, in Metastable Systems Under Pressure Chapter Metastable Water Under Pressure. NATO Science for Peace and Security Series A, Chemistry and Biology (Springer, 2010), pp. 197–216

  122. G. Franzese, H.E. Stanley, Understanding the Unusual Properties of Water. Chapter 7 (CRC Press, Boca Raton, 2010)

    Google Scholar 

  123. E.G. Strekalova, M.G. Mazza, H.E. Stanley, G. Franzese, Large decrease of fluctuations for supercooled water in hydrophobic nanoconfinement. Phys. Rev. Lett. 106, 145701 (2011)

    Article  CAS  Google Scholar 

  124. O. Vilanova, G. Franzese, Structural and dynamical properties of nanoconfined supercooled water, arXiv: 1102.2864 (2011)

  125. F. de los Santos, G. Franzese, Understanding diffusion and density anomaly in a coarse-grained model for water confined between hydrophobic walls. J. Phys. Chem. B 115, 14311–14320 (2011)

    Article  CAS  Google Scholar 

  126. M.G. Mazza, K. Stokely, S.E. Pagnotta, F. Bruni, H.E. Stanley, G. Franzese, More than one dynamic crossover in protein hydration water. Proc. Natl. Acad. Sci. USA 108, 19873–19878 (2011)

    Article  Google Scholar 

  127. F. de los Santos, G. Franzese, Relations between the diffusion anomaly and cooperative rearranging regions in a hydrophobically nanoconfined water monolayer. Phys. Rev. E 85, 010602 (2012)

    Article  CAS  Google Scholar 

  128. E.G. Strekalova, M.G. Mazza, H.E. Stanley, G. Franzese, Hydrophobic nanoconfinement suppresses fluctuations in supercooled water. J. Phys. Condens. Matter 24, 064111 (2012)

    Article  CAS  Google Scholar 

  129. E. Strekalova, D. Corradini, M. Mazza, S. Buldyrev, P. Gallo, G. Franzese, H. Stanley, Effect of hydrophobic environments on the hypothesized liquid-liquid critical point of water. J. Biol. Phys. 38, 97–111 (2012)

    Article  CAS  Google Scholar 

  130. M.G. Mazza, K. Stokely, H.E. Stanley, G. Franzese, Effect of pressure on the anomalous response functions of a confined water monolayer at low temperature. J. Chem. Phys. 137, 204502–13 (2012)

    Article  CAS  Google Scholar 

  131. V. Bianco, G. Franzese, Critical behavior of a water monolayer under hydrophobic confinement, arXiv: 1212.2847 (2012)

  132. R. Ludwig, Water: from clusters to the bulk. Angew. Chem. In. Ed. 40, 1808–1827 (2001)

    Article  Google Scholar 

  133. L.H. de la Peña, P.G. Kusalik, Temperature dependence of quantum effects in liquid water. J. Am. Chem. Soc. 127, 5246–5251 (2005)

    Article  CAS  Google Scholar 

  134. D. Liu, Y. Zhang, C.-C. Chen, C.-Y. Mou, P.H. Poole, S.-H. Chen, Observation of the density minimum in deeply supercooled confined water. Proc. Natl. Acad. Sci. USA 104, 9570–9574 (2007)

    Article  CAS  Google Scholar 

  135. D.A. Fuentevilla, M.A. Anisimov, Scaled equation of state for supercooled water near the liquid-liquid critical point. Phys. Rev. Lett. 97, 195702 (2006)

    Article  CAS  Google Scholar 

  136. C.E. Bertrand, M.A. Anisimov, Peculiar thermodynamics of the second critical point in supercooled water. J. Phys. Chem. B 115, 14099–14111 (2011)

    Article  CAS  Google Scholar 

  137. V. Holten, C.E. Bertrand, M.A. Anisimov, J.V. Sengers, Thermodynamics of supercooled water. J. Chem. Phys. 136, 094507–18 (2012)

    Article  CAS  Google Scholar 

  138. V. Holten, M.A. Anisimov, Entropy-driven liquid-liquid separation in supercooled water. Sci. Rep. 2, 10 (2012)

    Article  CAS  Google Scholar 

  139. N.E. Levinger, Water in confinement. Science 298, 1722–1723 (2002)

    Article  Google Scholar 

  140. C.I. Bouzigues, P. Tabeling, L. Bocquet, Nanofluidics in the debye layer at hydrophilic and hydrophobic surfaces. Phys. Rev. Lett. 101, 114503 (2008)

    Article  CAS  Google Scholar 

  141. J.CT. Eijkel, A. Berg, Nanofluidics: what is it and what can we expect from it? Microfluid. Nanofluid. 1, 249–267 (2005)

    Article  CAS  Google Scholar 

  142. X.-Q. Chu, A. Faraone, C. Kim, E. Fratini, P. Baglioni, J.B. Leao, S.-H. Chen, Proteins remain soft at lower temperatures under pressure. J. Phys. Chem. B 113, 5001–5006 (2009)

    Article  CAS  Google Scholar 

  143. E. Donth, The size of cooperatively rearranging regions at the glass transition. J. Non-Crystal. Solids 53, 325–330 (1982)

    Article  Google Scholar 

  144. Y.-g. Zheng, H.-f. Ye, Z.-q. Zhang, H.-w. Zhang, Water diffusion inside carbon nanotubes: mutual effects of surface and confinement. Phys. Chem. Chem. Phys. 14, 964–971 (2012)

    Article  CAS  Google Scholar 

  145. R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium–leak–tight graphene-based membranes. Science 335, 442–444 (2012)

    Article  CAS  Google Scholar 

  146. S. Karan, S. Samitsu, X. Peng, K. Kurashima, I. Ichinose, Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets. Science 335, 444–447 (2012)

    Article  CAS  Google Scholar 

  147. M. Settles, W. Doster, Anomalous diffusion of adsorbed water, a neutron scattering study of hydrated myoglobin. Faraday Discuss. 103, 269–279 (1996)

    Article  Google Scholar 

  148. W. Doster, The protein-solvent glass transition. Biochim. Biophys. Acta 1804, 3–14 (2010)

    Article  CAS  Google Scholar 

  149. A.D. Bruce, N.B. Wilding, Scaling fields and universality of the liquid-gas critical point. Phys. Rev. Lett. 68, 193–196 (1992)

    Article  Google Scholar 

  150. N.B. Wilding, Critical-point and coexistence-curve properties of the Lennard-Jones fluid: a finite-size scaling study. Phys. Rev. E 52, 602–611 (1995)

    Article  Google Scholar 

  151. Y. Zhang, K.H. Liu, M. Lagi, D. Liu, K.C. Littrell, C.Y. Mou, S.-H. Chen, Absence of the density minimum of supercooled water in hydrophobic confinement. J. Phys. Chem. B 113, 5007–5010 (2009)

    Article  CAS  Google Scholar 

  152. E.G. Strekalova, J. Luo, H.E. Stanley, G. Franzese, S.V. Buldyrev, Confinement of anomalous liquids in nanoporous matrices. Phys. Rev. Lett. 109, 105701 (2012)

    Article  CAS  Google Scholar 

  153. F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C.-Y. Mou, S.-H. Chen, The anomalous behavior of the density of water in the range 30 K < T < 373 K. Proc. Natl. Acad. Sci. USA 104, 18387–18391 (2007)

    Article  CAS  Google Scholar 

  154. J. Kyte, R.F. Doolittle, A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982)

    Article  Google Scholar 

  155. T.R. Jensen, M.Ø. Jensen, N. Reitzel, K. Balashev, G.H. Peters, K. Kjaer, T. Bjørnholm, Water in contact with extended hydrophobic surfaces: direct evidence of weak dewetting. Phys. Rev. Lett. 90, 086101 (2003)

    Article  CAS  Google Scholar 

  156. K. Lum, D. Chandler, J.D. Weeks, Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999)

    Article  Google Scholar 

  157. X. Huang, R. Zhou, B.J. Berne, Drying and hydrophobic collapse of paraffin plates. J. Phys. Chem. B 109, 3546–3552 (2005)

    Article  CAS  Google Scholar 

  158. T. Hotta, M. Sasai, Fluctuating hydration structure around nanometer-size hydrophobic solutes i. Caging and drying around C60 and C60H60 spheres. J. Phys. Chem. B 109, 18600–18608 (2005)

    Article  CAS  Google Scholar 

  159. T. Hotta, M. Sasai, Fluctuating hydration structure around nanometer-size hydrophobic solutes ii. Caging and drying around single-wall carbon nanotubes. J. Phys. Chem. C 111, 2861–2871 (2007)

    Article  CAS  Google Scholar 

  160. M.I. Marqués, J.M. Borreguero, H.E. Stanley, N.V. Dokholyan, Possible mechanism for cold denaturation of proteins at high pressure. Phys. Rev. Lett. 91, 138103 (2003)

    Article  CAS  Google Scholar 

  161. C.L. Dias, T. Ala-Nissila, M. Karttunen, I. Vattulainen, M. Grant, Microscopic mechanism for cold denaturation. Phys. Rev. Lett. 100, 118101–4 (2008)

    Article  CAS  Google Scholar 

  162. F. Meersman, C.M. Dobson, K. Heremans, Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions. Chem. Soc. Rev. 35, 908–917 (2006)

    Article  CAS  Google Scholar 

  163. H.S. Frank, M.W. Evans, Free volume and entropy in condensed systems iii. entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13, 507–532 (1945)

    Article  CAS  Google Scholar 

  164. N. Muller, Search for a realistic view of hydrophobic effects. Acc. Chem. Res. 23, 23–28 (1990)

    Article  CAS  Google Scholar 

  165. K.A.T. Silverstein, A.D.J. Haymet, K.A. Dill, A simple model of water and the hydrophobic effect. J. Am. Chem. Soc. 120, 3166–3175 (1998)

    Article  CAS  Google Scholar 

  166. K.F. Lau, K.A. Dill, A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22, 3986–3997 (1989)

    Article  CAS  Google Scholar 

  167. G. Caldarelli, P. de los Rios, Cold and warm denaturation of proteins. J. Biol. Phys. 27, 229–241 (2001)

    Article  Google Scholar 

  168. B.A. Patel, P.G. Debenedetti, F.H. Stillinger, P.J. Rossky, A water-explicit lattice model of heat-, cold-, and pressure–induced protein unfolding. Biophys. J. 93, 4116–4127 (2007)

    Article  CAS  Google Scholar 

  169. S.V. Buldyrev, P. Kumar, P.G. Debenedetti, P.J. Rossky, H.E. Stanley, Water-like solvation thermodynamics in a spherically symmetric solvent model with two characteristic lengths. Proc. Natl. Acad. Sci. USA 104, 20177–20182 (2007)

    Article  Google Scholar 

  170. S. Matysiak, P.G. Debenedetti, P.J. Rossky, Role of hydrophobic hydration in protein stability: a 3d water-explicit protein model exhibiting cold and heat denaturation. J. Phys. Chem. B 116, 8095–8104 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank M.C. Barbosa, M. Bernabei, S.V. Buldyrev, F. Bruni, S.-H. Chen, K.A. Dawson, P. Debenedetti, P. Kumar, F. Leoni, J. Luo, G. Malescio, F. Mallamace, M.I. Marqués, M. G. Mazza, A.B. de Oliveira, S. Pagnotta, D. Reguera, F. de los Santos, F. Sciortino, H.E. Stanley, F.W. Starr, K. Stokely, E.G. Strekalova, O. Vilanova and P. Vilaseca for helpful discussions. We thank for support the Spanish Ministerio de Ciencia e Innovación Grant FIS2009-10210, the Spanish Ministerio de Economia y Competitividad Grant FIS2012-31025, the Generalitat de Catalunya Grant 2010 FI- DGR, the European Commission Grant FP7-NMP-2010-EU-USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Franzese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franzese, G., Bianco, V. Water at Biological and Inorganic Interfaces. Food Biophysics 8, 153–169 (2013). https://doi.org/10.1007/s11483-013-9310-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-013-9310-7

Keywords

Navigation