Skip to main content
Log in

Differences in Free Volume Elements of the Carrier Matrix Affect the Stability of Microencapsulated Lipophilic Food Ingredients

  • Original Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

An Erratum to this article was published on 16 April 2009

Abstract

Fish oil was encapsulated by spray-drying into different matrices based on n-octenylsuccinate-derivatised starch (nOSA starch) and carbohydrate blends varying in dextrose equivalent and molecular weight profile. Based on the development of the hydroperoxide and propanal content upon storage significant differences in the stability of the microencapsulated oil were observed. With 40 mmol/kg oil the hydroperoxide content after eight weeks of storage at 20 °C and 33% relative humidity was lowest in fish oil encapsulated in a matrix containing nOSA starch and maltose. In contrast, the lowest stability was observed in fish oil encapsulated in a matrix based on nOSA starch and maltodextrin with a dextrose equivalent of 18. Physical characteristics like viscosity of the feed emulsion and oil droplet size, which influence drying behaviour as well as particle characteristics like particle size, density or surface area did not differ and thus cannot explain the differences in the rate of autoxidation. Positron annihilation lifetime spectroscopy clearly showed distinct differences in the ortho-positronium lifetime, and thus in the size of free volume elements between the carrier matrices. It is suggested that as a consequence, the matrices differed in oxygen diffusivity, which must be considered to be a key determinant in autoxidation of fish oil encapsulated in glassy carbohydrate matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Y. Roos, M. Karel Biotechnol. Prog. 7(1), 49–53 (1991). doi:10.1021/bp00007a008

    Article  CAS  Google Scholar 

  2. M. Le Meste, D. Champion, G. Roudat, D. Blond, D. Simatos, J. Food. Sci. 67(7), 2444–2458 (2002). doi:10.1111/j.1365-2621.2002.tb08758.x

    Article  Google Scholar 

  3. P.H. Pfromm (ed) Materials Science of Membranes for Gas and Vapour Separation. by Y. Yampolskii, I. Pinnau, B.D. Freeman (Wiley, 2006), pp. 293–306

  4. V. Orlien, A.B. Andersen, T. Sinkko, L.H. Skibsted, Food Chem. 68(2), 191–199 (2000). doi:10.1016/S0308-8146(99)00177-6

    Article  CAS  Google Scholar 

  5. V. Orlien, J. Risbo, H. Rantanen, L.H. Skibsted, Food Chem. 94(1), 37–46 (2006). doi:10.1016/j.foodchem.2004.10.047

    Article  CAS  Google Scholar 

  6. A.B. Andersen, J. Risbo, M.L. Andersen, L.H. Skibsted, Food Chem. 70(4), 499–508 (2000). doi:10.1016/S0308-8146(00)00102-3

    Article  CAS  Google Scholar 

  7. G. Dlubek, J. Wawryszczuk, J. Pionteck, T. Goworek, H. Kaspar, K.H. Lochhaas, Macromolecules 38(2), 429–437 (2005). doi:10.1021/ma048310f

    Article  CAS  Google Scholar 

  8. Y. Yampolskii, V. Shantarovich (eds) by Y. Yampolskii, I. Pinnau, B. D. Freeman. Materials science of membranes for gas and vapor separation. (Wiley, 2006), pp. 191–210

  9. S. Anandaraman, G.A. Reineccius, Food Technol 11, 88–92 (1986)

    Google Scholar 

  10. S. Desobry, F.M. Netto, T.P. Labuza, J. Food Process. Preservation 23(1), 39–55 (1999). doi:10.1111/j.1745-4549.1999.tb00368.x

    Article  CAS  Google Scholar 

  11. S. Drusch, Y. Serfert, M. Scampicchio, B. Schmidt-Hansberg, K. Schwarz, J. Agric. Food Chem. 55(26), 11044–11051 (2007). doi:10.1021/jf072536a

    Article  CAS  Google Scholar 

  12. S. Drusch, S. Berg, M. Scampicchio et al., Food Hydrocolloids 23, 942–948 (2009)

    Article  CAS  Google Scholar 

  13. M. Rudel, J. Kruse, K. Rätzke et al., Macromolecules 41, 788 (2008)

    Article  CAS  Google Scholar 

  14. D.M. Sterescu, D.F. Stamatialis, E. Mendes et al., Macromolecules 40, 5400 (2007)

    Article  CAS  Google Scholar 

  15. Corn Refiners Association Dextrose Equivalent. http://www.corn.org/methods/E-26.pdf, visited: 23.04.2007

  16. M. Eldrup, D. Lightbody, J.N. Sherwood, Chemical Physics Letters 63, 51–58 (1981)

    CAS  Google Scholar 

  17. S.J. Tao, Appl. Phys. A Mater. Sci. Process 10(1), 67–79 (1976)

    CAS  Google Scholar 

  18. C. Nagel, E. Schmidtke, K. Günther-Schade et al., Macromolecules 33(6), 2242–2248 (2000). doi:10.1021/ma990760y

    Article  CAS  Google Scholar 

  19. Y.C. Jean, P.E. Mallon, D. Schrader, Principles and Application of Positron & Positronium Chemistry (World Scientific, 2003)

  20. J. Kruse, J. Kanzow, K. Rätzke et al., Macromolecules 38(23), 9638–9643 (2005). doi:10.1021/ma0473521

    Article  CAS  Google Scholar 

  21. J. Kansy, Nucl. Instrum. Methods Phys. Res. A 374(2), 23–244 (1996). doi:10.1016/0168-9002(96)00075-7

    Article  Google Scholar 

  22. International Dairy Federation, International IDF Standards Square Vergot 41, Brussels, Belgium, sec. 74A:1991 (1991)

  23. Y. Serfert, S. Drusch, K. Schwarz, Food Chem 113, 1106–1112 (2009)

    Article  CAS  Google Scholar 

  24. S. Drusch, K. Schwarz, Eur. Food Res. Technol. 222(1), 155–164 (2006). doi:10.1007/s00217-005-0020-3

    Article  CAS  Google Scholar 

  25. D.L. Moreau, M. Rosenberg, J. Food Sci. 64(3), 405 (1999). doi:10.1111/j.1365-2621.1999.tb15052.x

    Article  CAS  Google Scholar 

  26. S. Drusch, S. Berg, Food Chem. 109(1), 17–24 (2008). doi:10.1016/j.foodchem.2007.12.016

    Article  CAS  Google Scholar 

  27. T.J. Buma, Neth Milk Dairy J. 25(2), 159–174 (1971)

    Google Scholar 

  28. S.A. Hogan, B.F. McNamee, E.D. O'Riordan, M. O'Sullivan, Int. Dairy J. 11(3), 137–144 (2001). doi:10.1016/S0958-6946(01)00091-7

    Article  CAS  Google Scholar 

  29. S. Townrow, D. Kilburn, A. Alam, J. Ubbink, J. Phys. Chem. B 111(44), 12643–12648 (2007). doi:10.1021/jp074884l

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present project was funded by the Cariplo foundation. The authors gratefully acknowledge the skilful help of Jörg Knipp and Sonja Berg at the Food Technology Division, University of Kiel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Drusch.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11483-009-9107-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drusch, S., Rätzke, K., Shaikh, M.Q. et al. Differences in Free Volume Elements of the Carrier Matrix Affect the Stability of Microencapsulated Lipophilic Food Ingredients. Food Biophysics 4, 42–48 (2009). https://doi.org/10.1007/s11483-008-9100-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-008-9100-9

Keywords

Navigation