Skip to main content
Log in

Solid–Liquid Equilibrium of Maltitol Aqueous Solutions—Implications on the Crystallization Behavior and Process

  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The solubility of maltitol in pure water and industrial syrup was measured in a temperature range from 10 to 90 °C. Maltitol is highly soluble in water, and this yields high viscosity values for the saturated aqueous solutions at different temperatures. In addition, solubility of maltitol in ethanol/water mixtures was followed at 30, 35, 45, and 55 °C. Results show that maltitol solubility is highly dependent on water content in the solvent mixture. Moreover, it increases monotonically with temperature. The logarithm of viscosity changes linearly against the mole fraction of maltitol in the aqueous solutions up to saturation. The saturated solutions showed a Newtonian behavior in a temperature range from 20 to 90 °C. Maltitol is also characterized in supersaturated solutions by a narrow metastable zone, which slightly increases as temperature is raised. The density of aqueous solutions of maltitol was measured as a function of molality up to saturation at 20 °C, and results show that density can be correlated with concentration according to a linear relation. The obtained results were used to explain maltitol crystallization, which exhibits a high nucleation rate and a slow growth leading to small size crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. A. Schouten, J.A. Kanters, J. Kroon, P. Looten, P. Duflot and M. Mathlouthi, Carbohydr Res 322(3–4), 298 (1999).

    Article  CAS  Google Scholar 

  2. F. Hutteau, M. Mathlouthi, M.O. Portmann and D. Kilcast, Food Chem 63(1), 9 (1998).

    Article  CAS  Google Scholar 

  3. F. Ronda, M. Gómez, C.A. Blanco and P.A. Caballero, Food Chem 90(4), 549 (2005).

    Article  CAS  Google Scholar 

  4. A. Maguire, J. Rugg-Gunn and G. Wright, J Dent 28(1), 51 (2000).

    Article  CAS  Google Scholar 

  5. S. Ohno, M. Hirao and M. Kido, Carbohydr Res 108(2), 163 (1982).

    Article  CAS  Google Scholar 

  6. G.A. Jeffrey and H.S. Kim, Carbohydr Res 14, 207 (1970).

    Article  CAS  Google Scholar 

  7. M. Mathlouthi and J. Genotelle, Rheological properties of sucrose solutions and suspensions. In: Sucrose, Properties and Applications, edited by M. Mathlouthi and P. Reiser (Blackie A & P, Glasgow 1995), p. 126.

    Google Scholar 

  8. A. Van Hook, Kinetics of crystallization—growth of crystals. In: Principles of Sugar Technology, Vol II, edited by P. Honig (Elsevier, Amsterdam 1959).

    Google Scholar 

  9. C.H. Schilling, M. Sikora, P. Tomasik, C. Li and V. Garcia, J Eur Ceram Soc 22(6), 917 (2002).

    Article  CAS  Google Scholar 

  10. H. Schiweck, M. Munir, K.M. Rapp, B. Schneider and M. Vogel, New Developments in the use of Sucrose as an industrial bulk chemical. In: Carbohydrates as Organic Raw Materials, edited by F.W. Lichtenthaler (VCH, Weinheim 1991), pp. 58–68.

    Google Scholar 

  11. F. Capet, S. Comini, G. Odou, P. Looten and M. Descamps, Carbohydr Res 339(6), 1225 (2004).

    Article  CAS  Google Scholar 

  12. G. L. Bockstanz, M. Buffa and C.T. Lira, J Chem Eng Data 34(4), 426 (1989).

    Article  CAS  Google Scholar 

  13. J.W. Mullin, Crystallization (Butterworths, London, UK 1972).

    Google Scholar 

  14. G.A. Jeffrey, Cooperativity, patterns, graph set theory, liquid crystals. In: An Introduction to Hydrogen Bonding, (Oxford University Press, New York, Oxford 1997), pp. 105–107.

  15. M. Mathlouthi, Carbohydr Res 91(2), 113 (1981).

    Article  CAS  Google Scholar 

  16. M. Mathlouthi, A.L. Cholli and J.L. Koenig, Carbohydr Res 147(1), 1 (1986).

    Article  CAS  Google Scholar 

  17. G. Vaccari and G. Mantovani, Sucrose crystallization. In: Sucrose, Properties and Applications, edited by M. Mathlouthi and P. Reiser (Blackie A & P, Glasgow 1995), p. 33.

    Google Scholar 

  18. M. Mathlouthi and J. Genotelle, Carbohydr Polym 37(3), 335 (1998).

    Article  Google Scholar 

  19. K. Wagnerowski, Gaz Cukrow 84(11), 241–246, 256 (1976).

    Google Scholar 

  20. Y. Zhu, D. Youssef, C. Porte, A. Rannou, M.P. Delplancke-Ogletree and B.L.M. Lung-Somarriba, J Cryst Growth 257(3–4), 370 (2003).

    Article  CAS  Google Scholar 

  21. S.A. Parke, G.G. Birch, M.O. Portmann and D. Kilcast, Food Chem 67(3), 247 (1999).

    Article  CAS  Google Scholar 

  22. A. Gharsallaoui, B. Rogé, J. Génotelle and M. Mathlouthi, Food Chem (2007), in press.

  23. N. Lebrun and J.C. van Miltenburg, J Alloys Comp 320, 320 (2001).

    Article  CAS  Google Scholar 

  24. M. Hirao, H. Hijia and T. Miyaka, Anhydrous crystals of maltitol and the whole crystalline hydrogenated starch hydrolysate mixture solid containing the crystals, and process for the production and uses thereof. US Patent 4408041 (1983).

  25. A. Van Hook, Sugar Technol Rev 8, 41 (1981).

    Google Scholar 

  26. M. Siniti, S. Jabrane and J.M. Létoffé, Thermochim Acta 325, 171 (1999).

    Article  CAS  Google Scholar 

  27. G. Vaccari, Continuous cooling crystallization versus evaporation crystallization. In: Proceedings of the 3rd International Symposium organized by Association Andrew van Hook (AvH), 1996, Reims, France, p. 51.

Download references

Acknowledgements

The authors gratefully acknowledge the technical and financial support of Roquette-frères S.A and especially the important scientific contribution of Pierrick Duflot during the research of this subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mathlouthi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gharsallaoui, A., Rogé, B. & Mathlouthi, M. Solid–Liquid Equilibrium of Maltitol Aqueous Solutions—Implications on the Crystallization Behavior and Process. Food Biophysics 3, 16–24 (2008). https://doi.org/10.1007/s11483-007-9044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-007-9044-5

Keywords

Navigation