Skip to main content

Advertisement

Log in

TAAR1 Regulates Purinergic-induced TNF Secretion from Peripheral, But Not CNS-resident, Macrophages

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Trace amine-associated receptor 1 (TAAR1) is an established neuroregulatory G protein-coupled receptor with recent studies suggesting additional functions related to immunomodulation. Our lab has previously investigated TAAR1 expression within cells of the innate immune system and herein we aim to further elucidate TAAR1 function in both peripherally-derived and CNS-resident macrophages. The selective TAAR1 agonist RO5256390 was used in combination with common damage associated molecular patterns (ATP and ADP) to observe the effect of TAAR1 agonism on modulating cytokine secretion and metabolic profiles. In mouse bone-marrow derived macrophages, TAAR1 agonism inhibited TNF secretion following ATP stimulation, which appeared to be downstream of an associated pro-inflammatory shift in metabolic profile and transcriptional regulation of TNF synthesis. In contrast, TAAR1 agonism had no effect on ADP-induced TNF and IL-6 secretion in mouse microglia in either the presence or absence of astrocytes. In summary, we report a novel interaction between TAAR1 and purinergic signaling in peripherally-derived, but not CNS-resident, macrophages. These findings provide the first evidence of trace aminergic and purinergic crosstalk, and support the potential for TAAR1 as a novel therapeutic target in inflammatory disorders.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amadio S, Apolloni S, D’Ambrosi N, Volonte C (2011) Purinergic signalling at the plasma membrane: a multipurpose and multidirectional mode to deal with amyotrophic lateral sclerosis and multiple sclerosis. J Neurochem 116:796–805

    Article  CAS  PubMed  Google Scholar 

  • Babusyte A, Kotthoff M, Fiedler J, Krautwurst D (2013) Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2. J Leukoc Biol 93:387–394

    Article  CAS  PubMed  Google Scholar 

  • Barnes DA, Galloway DA, Hoener MC, Berry MD, Moore CS (2021) TAAR1 Expression in Human Macrophages and Brain Tissue: A Potential Novel Facet of MS Neuroinflammation. Int J Mol Sci 22

  • Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci U S A 98:8966–8971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradaia A, Trube G, Stalder H, Norcross RD, Ozmen L, Wettstein JG, Pinard A, Buchy D, Gassmann M, Hoener MC, Bettler B (2009) The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc Natl Acad Sci U S A 106:20081–20086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braulke LJ, Klingenspor M, DeBarber A, Tobias SC, Grandy DK, Scanlan TS, Heldmaier G (2008) 3-Iodothyronamine: a novel hormone controlling the balance between glucose and lipid utilisation. J Comp Physiol B 178:167–177

    Article  CAS  PubMed  Google Scholar 

  • Bugda Gwilt K, Olliffe N, Hoffing RA, Miller GM (2019) Trace amine associated receptor 1 (TAAR1) expression and modulation of inflammatory cytokine production in mouse bone marrow-derived macrophages: a novel mechanism for inflammation in ulcerative colitis. Immunopharmacol Immunotoxicol 41:577–585

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Yao Y, Teng F, Li Y, Wu L, Yan W, Lin N (2021) The role of P2X7 receptor in infection and metabolism: Based on inflammation and immunity. Int Immunopharmacol 101:108297

    Article  CAS  PubMed  Google Scholar 

  • Chazaud B (2020) Inflammation and Skeletal Muscle Regeneration: Leave It to the Macrophages! Trends Immunol 41:481–492

    Article  CAS  PubMed  Google Scholar 

  • Christian SL, Berry MD (2018) Trace Amine-Associated Receptors as Novel Therapeutic Targets for Immunomodulatory Disorders. Front Pharmacol 9:680

    Article  PubMed  PubMed Central  Google Scholar 

  • Cisneros IE, Ghorpade A (2014) Methamphetamine and HIV-1-induced neurotoxicity: role of trace amine associated receptor 1 cAMP signaling in astrocytes. Neuropharmacology 85:499–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cisneros IE, Ghorpade A, Borgmann K (2020) Methamphetamine Activates Trace Amine Associated Receptor 1 to Regulate Astrocyte Excitatory Amino Acid Transporter-2 via Differential CREB Phosphorylation During HIV-Associated Neurocognitive Disorders. Front Neurol 11:593146

    Article  PubMed  PubMed Central  Google Scholar 

  • Comer AL, Carrier M, Tremblay ME, Cruz-Martin A (2020) The Inflamed Brain in Schizophrenia: The Convergence of Genetic and Environmental Risk Factors That Lead to Uncontrolled Neuroinflammation. Front Cell Neurosci 14:274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Andrea G, Terrazzino S, Fortin D, Farruggio A, Rinaldi L, Leon A (2003) HPLC electrochemical detection of trace amines in human plasma and platelets and expression of mRNA transcripts of trace amine receptors in circulating leukocytes. Neurosci Lett 346:89–92

    Article  CAS  PubMed  Google Scholar 

  • Dave S, Chen L, Yu C, Seaton M, Khodr CE, Al-Harthi L, Hu XT (2019) Methamphetamine decreases K(+) channel function in human fetal astrocytes by activating the trace amine-associated receptor type-1. J Neurochem 148:29–45

    Article  CAS  PubMed  Google Scholar 

  • Debom GN, Rubenich DS, Braganhol E (2021) Adenosinergic Signaling as a Key Modulator of the Glioma Microenvironment and Reactive Astrocytes. Front Neurosci 15:648476

    Article  PubMed  Google Scholar 

  • Fleischer LM, Somaiya RD, Miller GM (2018) Review and Meta-Analyses of TAAR1 Expression in the Immune System and Cancers. Front Pharmacol 9:683

    Article  PubMed  PubMed Central  Google Scholar 

  • Gainetdinov RR, Hoener MC, Berry MD (2018) Trace Amines and Their Receptors. Pharmacol Rev 70:549–620

    Article  CAS  PubMed  Google Scholar 

  • Galvan-Pena S, O’Neill LA (2014) Metabolic reprograming in macrophage polarization. Front Immunol 5:420

    PubMed  PubMed Central  Google Scholar 

  • Heffernan MLR, Herman LW, Brown S, Jones PG, Shao L, Hewitt MC, Campbell JE, Dedic N, Hopkins SC, Koblan KS, Xie L (2022) Ulotaront: A TAAR1 Agonist for the Treatment of Schizophrenia. ACS Med Chem Lett 13:92–98

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Li Y, Fu M, Xin HB (2018) Polarizing Macrophages In Vitro. Methods Mol Biol 1784:119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illes P, Muller CE, Jacobson KA, Grutter T, Nicke A, Fountain SJ, Kennedy C, Schmalzing G, Jarvis MF, Stojilkovic SS, King BF, Di Virgilio F (2021) Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br J Pharmacol 178:489–514

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, Delicado EG, Gachet C, Kennedy C, von Kugelgen I, Li B, Miras-Portugal MT, Novak I, Schoneberg T, Perez-Sen R, Thor D, Wu B, Yang Z, Muller CE (2020) Update of P2Y receptor pharmacology: IUPHAR Review 27. Br J Pharmacol 177:2413–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koblan KS, Kent J, Hopkins SC, Krystal JH, Cheng H, Goldman R, Loebel A (2020) A Non-D2-Receptor-Binding Drug for the Treatment of Schizophrenia. N Engl J Med 382:1497–1506

    Article  CAS  PubMed  Google Scholar 

  • Li H, Jiang T, Li MQ, Zheng XL, Zhao GJ (2018) Transcriptional Regulation of Macrophages Polarization by MicroRNAs. Front Immunol 9:1175

    Article  PubMed  PubMed Central  Google Scholar 

  • Maddur MS, Miossec P, Kaveri SV, Bayry J (2012) Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol 181:8–18

    Article  CAS  PubMed  Google Scholar 

  • Matejuk A, Ransohoff RM (2020) Crosstalk Between Astrocytes and Microglia: An Overview. Front Immunol 11:1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore CS, Ase AR, Kinsara A, Rao VT, Michell-Robinson M, Leong SY, Butovsky O, Ludwin SK, Seguela P, Bar-Or A, Antel JP (2015) P2Y12 expression and function in alternatively activated human microglia. Neurol Neuroimmunol Neuroinflamm 2:e80

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray PJ et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray RZ, Stow JL (2014) Cytokine Secretion in Macrophages: SNAREs, Rabs, and Membrane Trafficking. Front Immunol 5:538

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson DA, Tolbert MD, Singh SJ, Bost KL (2007) Expression of neuronal trace amine-associated receptor (Taar) mRNAs in leukocytes. J Neuroimmunol 192:21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panas MW, Xie Z, Panas HN, Hoener MC, Vallender EJ, Miller GM (2012) Trace amine associated receptor 1 signaling in activated lymphocytes. J Neuroimmune Pharmacol 7:866–876

    Article  PubMed  Google Scholar 

  • Ponce-Regalado MD, Perez-Sanchez G, Rojas-Espinosa O, Arce-Paredes P, Giron-Perez MI, Pavon-Romero L, Becerril-Villanueva E (2022) NeuroImmunoEndocrinology: A brief historic narrative. J Leukoc Biol

  • Stephen B, Hajjar J (2018) Overview of Basic Immunology and Translational Relevance for Clinical Investigators. Adv Exp Med Biol 995:1–41

    Article  PubMed  Google Scholar 

  • Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249:158–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonelli M (2022) The Breakthrough of TAAR1 Agonists for the Treatment of Neuropsychiatric Disorders: One Step Away. Curr Med Chem 29:4893–4895

    Article  CAS  PubMed  Google Scholar 

  • Tonelli M, Cichero E (2020) Trace amine associated receptor 1 (TAAR1) modulators: a patent review (2010-present). Expert Opin Ther Pat 30:137–145

    Article  CAS  PubMed  Google Scholar 

  • Vultaggio-Poma V, Falzoni S, Salvi G, Giuliani AL, Di Virgilio F (2022) Signalling by extracellular nucleotides in health and disease. Biochim Biophys Acta Mol Cell Res 1869:119237

    Article  CAS  PubMed  Google Scholar 

  • Wasik AM, Millan MJ, Scanlan T, Barnes NM, Gordon J (2012) Evidence for functional trace amine associated receptor-1 in normal and malignant B cells. Leuk Res 36:245–249

    Article  CAS  PubMed  Google Scholar 

  • Zha QB, Wei HX, Li CG, Liang YD, Xu LH, Bai WJ, Pan H, He XH, Ouyang DY (2016) ATP-Induced Inflammasome Activation and Pyroptosis Is Regulated by AMP-Activated Protein Kinase in Macrophages. Front Immunol 7:597

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks to Tangyne Berry, Neva Fudge, and Brad Williams for their expert technical assistance in sample preparation and storage.

Funding

This research was funded by the Natural Sciences and Engineering Research Council (RGPIN-2016–04164 & RGPIN-2018–06201) and the Canada Research Chairs Program (950–232601).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, David A. Barnes, Craig S. Moore, and Mark D. Berry; Methodology, David A. Barnes, Craig S. Moore, and Mark D. Berry; Validation, David A. Barnes; Formal Analysis, David A. Barnes; Investigation, David A. Barnes, Craig S. Moore, and Mark D. Berry; Resources, Marius C. Hoener, Craig S. Moore, and Mark D. Berry; Data Curation, David A. Barnes, Craig S. Moore, and Mark D. Berry; Writing – Original Draft Preparation, David A. Barnes; Writing – Review & Editing, David A. Barnes, Marius C. Hoener, Craig S. Moore, and Mark D. Berry; Visualization, David A. Barnes; Supervision, Craig S. Moore and Mark D. Berry; Project Administration, David A. Barnes, Craig S. Moore, and Mark D. Berry; Funding Acquisition, Craig S. Moore and Mark D. Berry.

Corresponding author

Correspondence to Mark D. Berry.

Ethics declarations

Ethical Approval

All animal experiments were approved by the Memorial University Animal Care Committee in accordance with the Canadian Council on Animal Care guidelines.

Conflict of Interest

Marius C. Hoener is an employee of F. Hoffman-La Roche Ltd., Basel, Switzerland.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 178 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnes, D.A., Hoener, M.C., Moore, C.S. et al. TAAR1 Regulates Purinergic-induced TNF Secretion from Peripheral, But Not CNS-resident, Macrophages. J Neuroimmune Pharmacol 18, 100–111 (2023). https://doi.org/10.1007/s11481-022-10053-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-022-10053-8

Keywords

Navigation