Skip to main content
Log in

TGF-β1 Neuroprotection via Inhibition of Microglial Activation in a Rat Model of Parkinson’s Disease

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Transforming growth factor (TGF)-β1 is a pleiotropic cytokine with immunosuppressive and anti-inflammatory properties. Recently we have shown that TGF-β1 pretreatment in vitro protects against 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic neuronal loss that characterizes in Parkinson’s disease (PD). Herein, we aimed to demonstrate that TGF-β1 administration in vivo after MPP+ toxicity has neuroprotection that is achieved by a mediation of microglia. A rat model of PD was prepared by injecting MPP+ unilaterally in the striatum. At 14 days after MPP+ injection, TGF-β1 was administrated in the right lateral cerebral ventricle. Primary ventral mesencephalic (VM) neurons and cerebral cortical microglia were treated by MPP+, respectively, and TGF-β1 was applied to neuronal or microglial cultures at 1 h after MPP+ treatment. As expected, MPP+ resulted in decrease in TGF-β1 production in the substantia nigra and in primary VM neurons and microglia. TGF-β1 intracerebroventricular administration alleviated MPP+-induced PD-like changes in pathology, motor coordination and behavior. Meanwhile, TGF-β1 ameliorated MPP+-induced microglial activation and inflammatory cytokine production in vivo. Interestingly, TGF-β1 treatment was not able to ameliorate MPP+-induced dopaminergic neuronal loss and caspase-3/9 activation in mono-neuron cultures, but TGF-β1 alleviated MPP+-induced microglial activation and inflammatory cytokine production in microglia-enriched cultures. This effect of TGF-β1 inhibiting microglial inflammatory response was blocked by Smad3 inhibitor SIS3. Importantly, neuronal exposure to supernatants of primary microglia that had been treated with TGF-β1 reduced dopaminergic neuronal loss and caspase-3/9 activation induced by MPP+-treated microglial supernatants. These findings establish that TGF-β1 exerts neuroprotective property in PD by inhibiting microglial inflammatory response via Smad3 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abutbul S, Shapiro J, Szaingurten-Solodkin I, Levy N, Carmy Y, Baron R, Jung S, Monsonego A (2012) TGF-β signaling through SMAD2/3 induces the quiescent microglial phenotype within the CNS environment. Glia 60:1160–1171

    Article  PubMed  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  CAS  PubMed  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  • Bollimpelli VS, Kondapi AK (2015) Enriched rat primary ventral mesencephalic neurons as an in-vitro culture model. Neuroreport 26:728–734

    Article  PubMed  Google Scholar 

  • Bournival J, Plouffe M, Renaud J, Provencher C, Martinoli MG (2012) Quercetin and sesamin protect dopaminergic cells from MPP+−induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system. Oxidative Med Cell Longev 2012:921941

    Article  Google Scholar 

  • Brionne TC, Tesseur I, Masliah E, Wyss-Coray T (2003) Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Brochard V, Combadière B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM, Duyckaerts C, Flavell RA, Hirsch EC, Hunot S (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119:182–192

    CAS  PubMed  Google Scholar 

  • Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143

    Article  CAS  PubMed  Google Scholar 

  • Chen JH, Ke KF, Lu JH, Qiu YH, Peng YP (2015) Protection of TGF-β1 against neuroinflammation and neurodegeneration in Aβ1-42-induced Alzheimer's disease model rats. PLoS One 10:e0116549

    Article  PubMed  PubMed Central  Google Scholar 

  • Cicchetti F, Brownell AL, Williams K, Chen YI, Livni E, Isacson O (2002) Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 15:991–998

    Article  CAS  PubMed  Google Scholar 

  • Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    Article  CAS  PubMed  Google Scholar 

  • Duman RS, Terwilliger RZ, Nestler EJ, Tallman JF (1989) Sodium and potassium regulation of guanine nucleotide-stimulated adenylate cyclase in brain. Biochem Pharmacol 38:1909–1914

    Article  CAS  PubMed  Google Scholar 

  • Floden AM, Combs CK (2007) Microglia repetitively isolated from in vitro mixed glial cultures retain their initial phenotype. J Neurosci Methods 164:218–224

    Article  CAS  PubMed  Google Scholar 

  • Flores B, von Bernhardi R (2012) Transforming growth factor β1 modulates amyloid β-induced glial activation through the Smad3-dependent induction of MAPK phosphatase-1. J Alzheimers Dis 3:417–429

    Google Scholar 

  • Gao X, Hu X, Qian L, Yang S, Zhang W, Zhang D, Wu X, Fraser A, Wilson B, Flood PM, Block M, Hong JS (2008a) Formyl-methionyl-leucyl-phenylalanine-induced dopaminergic neurotoxicity via microglial activation: a mediator between peripheral infection and neurodegeneration? Environ Health Perspect 116:593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM (2008b) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28:7687–7698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman SM (2014) Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol 54:141–164

    Article  CAS  PubMed  Google Scholar 

  • Harms AS, Cao S, Rowse AL, Thome AD, Li X, Mangieri LR, Cron RQ, Shacka JJ, Raman C, Standaert DG (2013) MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J Neurosci 33:9592–9600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera-Molina R, von Bernhardi R (2005) Transforming growth factor-beta 1 produced by hippocampal cells modulates microglial reactivity in culture. Neurobiol Dis 19:229–236

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  CAS  PubMed  Google Scholar 

  • Huang CF, Li G, Ma R, Sun SG, Chen JG (2008) Thrombin-induced microglial activation contributes to the degeneration of nigral dopaminergic neurons in vivo. Neurosci Bull 24:66–72

    Article  CAS  PubMed  Google Scholar 

  • Jana M, Liu X, Koka S, Ghosh S, Petro TM, Pahan K (2001) Ligation of CD40 stimulates the induction of nitric-oxide synthase in microglial cells. J Biol Chem 276:44527–44533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jellinger KA (2001) The pathology of Parkinson’s disease. Adv Neurol 86:55–72

    CAS  PubMed  Google Scholar 

  • Kim WK, Hwang SY, Oh ES, Piao HZ, Kim KW, Han IO (2004) TGF-beta1 represses activation and resultant death of microglia via inhibition of phosphatidylinositol 3-kinase activity. J Immunol 172:7015–7023

    Article  CAS  PubMed  Google Scholar 

  • Le Y, Iribarren P, Gong W, Cui Y, Zhang X, Wang JM (2004) TGF-beta1 disrupts endotoxin signaling in microglial cells through Smad3 and MAPK pathways. J Immunol 173:962–968

    Article  CAS  PubMed  Google Scholar 

  • Leem E, Nam JH, Jeon MT, Shin WH, Won SY, Park SJ, Choi MS, Jin BK, Jung UJ, Kim SR (2014) Naringin protects the nigrostriatal dopaminergic projection through induction of GDNF in a neurotoxin model of Parkinson's disease. J Nutr Biochem 25:801–806

    Article  CAS  PubMed  Google Scholar 

  • Li A, Guo H, Luo X, Sheng J, Yang S, Yin Y, Zhou J, Zhou J (2006) Apomorphine-induced activation of dopamine receptors modulates FGF-2 expression in astrocytic cultures and promotes survival of dopaminergic neurons. FASEB J 20:1263–1265

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Du L, Hong JS (2000) Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther 293:607–617

    CAS  PubMed  Google Scholar 

  • Liu Z, Chen HQ, Huang Y, Qiu YH, Peng YP (2016) Transforming growth factor-β1 acts via TβR-I on microglia to protect against MPP(+)-induced dopaminergic neuronal loss. Brain Behav Immun 51:131–143

    Article  CAS  PubMed  Google Scholar 

  • Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483

    Article  PubMed  Google Scholar 

  • Mitchell K, Shah JP, Tsytsikova LV, Campbell AM, Affram K, Symes AJ (2014) LPS antagonism of TGF-β signaling results in prolonged survival and activation of rat primary microglia. J Neurochem 129:155–168

    Article  CAS  PubMed  Google Scholar 

  • Miwa H, Kubo T, Morita S, Nakanishi I, Kondo T (2004) Oxidative stress and microglial activation in substantia nigra following striatal MPP+. Neuroreport 15:1039–1044

    Article  CAS  PubMed  Google Scholar 

  • Park ES, Kim SR, Jin BK (2012) Transient receptor potential vanilloid subtype 1 contributes to mesencephalic dopaminergic neuronal survival by inhibiting microglia-originated oxidative stress. Brain Res Bull 89:92–96

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312

    Article  CAS  PubMed  Google Scholar 

  • Qian L, Tan KS, Wei SJ, Wu HM, Xu Z, Wilson B, Lu RB, Hong JS, Flood PM (2007) Microglia-mediated neurotoxicity is inhibited by morphine through an opioid receptor-independent reduction of NADPH oxidase activity. J Immunol 179:1198–1209

    Article  CAS  PubMed  Google Scholar 

  • Ramírez G, Toro R, Dobeli H, von Bernhardi R (2005) Protection of rat primary hippocampal cultures from a beta cytotoxicity by pro-inflammatory molecules is mediated by astrocytes. Neurobiol Dis 19:243–254

    Article  PubMed  Google Scholar 

  • Sharaf A, Krieglstein K, Spittau B (2013) Distribution of microglia in the postnatal murine nigrostriatal system. Cell Tissue Res 351:373–382

    Article  PubMed  Google Scholar 

  • Sindhu KM, Banerjee R, Senthilkumar KS, Saravanan KS, Raju BC, Rao JM, Mohanakumar KP (2006) Rats with unilateral median forebrain bundle, but not striatal or nigral, lesions by the neurotoxins MPP+ or rotenone display differential sensitivity to amphetamine and apomorphine. Pharmacol Biochem Behav 84:321–329

    Article  CAS  PubMed  Google Scholar 

  • Smeyne RJ, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Brain Res Mol Brain Res 134:57–66

    Article  CAS  PubMed  Google Scholar 

  • Spittau B, Wullkopf L, Zhou X, Rilka J, Pfeifer D, Krieglstein K (2013) Endogenous transforming growth factor-beta promotes quiescence of primary microglia in vitro. Glia 61:287–300

    Article  PubMed  Google Scholar 

  • Sugama S, Yang LC, Cho BP, DeGiorgio LA, Lorenzl S, Albers DS, Beal MF, Volpe BT, Joh TH (2003) Age-related microglial activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57BL/6 mice. Brain Res 964:288–294

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Tang HM, Feng Y, Gao JP, Fan Y, Tang YH, Yang YK, Li WW, Wang XY, Ma J, Wang GH, Huang YL, Li HW, Cai DF (2011) New evidences for fractalkine/CX3CL1 involved in substantia nigral microglial activation and behavioral changes in a rat model of Parkinson's disease. Neurobiol Aging 32:443–458

    Article  CAS  Google Scholar 

  • Teixeira MD, Souza CM, Menezes AP, Carmo MR, Fonteles AA, Gurgel JP, Lima FA, Viana GS, Andrade GM (2013) Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats. Pharmacol Biochem Behav 110:1–7

    Article  CAS  PubMed  Google Scholar 

  • Tichauer J, von Bernhardi R (2012) Transforming growth factor-β stimulates β amyloid uptake by microglia through Smad3-dependent mechanisms. J Neurosci Res 90:1970–1980

    Article  CAS  PubMed  Google Scholar 

  • Vivien D, Ali C (2006) Transforming growth factor-beta signalling in brain disorders. Cytokine Growth Factor Rev 17:121–128

    Article  CAS  PubMed  Google Scholar 

  • Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, Wiesel P, Chin MT, Topper JN, Perrella MA, Lee ME (2000) Transforming growth factor-beta 1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem 275:36653–36658

    Article  CAS  PubMed  Google Scholar 

  • Xiao Q, Zhao W, Beers DR, Yen AA, Xie W, Henkel JS, Appel SH (2007) Mutant SOD1(G93A) microglia are more neurotoxic relative to wild-type microglia. J Neurochem 102:2008–2019

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Spittau B, Krieglstein K (2012) TGFβ signalling plays an important role in IL4-induced alternative activation of microglia. J Neuroinflammation 9:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Zöller T, Krieglstein K, Spittau B (2015) TGFβ1 inhibits IFNγ-mediated microglia activation and protects mDA neurons from IFNγ-driven neurotoxicity. J Neurochem 134:125–134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants 81271323 and 31371182 from the National Natural Science Foundation of China, MS12015104 and MS12015096 from the Nantong Applied Research Program of China, and a project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Hua Qiu or Yu-Ping Peng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Xiao Chen and Zhan Liu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Liu, Z., Cao, BB. et al. TGF-β1 Neuroprotection via Inhibition of Microglial Activation in a Rat Model of Parkinson’s Disease. J Neuroimmune Pharmacol 12, 433–446 (2017). https://doi.org/10.1007/s11481-017-9732-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-017-9732-y

Keywords

Navigation