Skip to main content

Advertisement

Log in

HIV-1 Tat-Mediated Neurotoxicity in Retinal Cells

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

The current study was aimed at investigating the effect of HIV-1 protein Tat on the retinal neurosensory cell line R28. Exposure of Tat resulted in induction of pro-inflammatory mediators such as CXCL10 and TNF-α in addition to the activation marker GFAP in these cells. Conditioned media from Tat-treated R28 cells was able to induce monocyte migration, an effect that was blocked by CXCR3 antagonist. Complementary studies in the HIV-1 Tat-transgenic mice, showed a complete absence of the nuclear layer and the outer photoreceptor segments of the retina with a concomitant increase in glial activation. These findings lend support to the observation in post-HAART era of increased incidence of immune response-mediated retinal degeneration. These findings have direct relevance to diseases such as immune response uveitis and patients recovering from CMV retinitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamus G, Machnicki M, Seigel GM (1997) Apoptotic retinal cell death induced by antirecoverin autoantibodies of cancer-associated retinopathy. Invest Ophthalmol Vis Sci 38:283–291

    PubMed  CAS  Google Scholar 

  • Asensio VC, Campbell IL (1999) Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci 22:504–512

    Article  PubMed  CAS  Google Scholar 

  • Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci USA 95:3117–3121

    Article  PubMed  CAS  Google Scholar 

  • Deshpande M, Zheng J, Borgmann K, Persidsky R, Wu L, Schellpeper C, Ghorpade A (2005) Role of activated astrocytes in neuronal damage: potential links to HIV-1-associated dementia. Neurotox Res 7:183–192

    Article  PubMed  CAS  Google Scholar 

  • Dhillon NK, Peng F, Ransohoff RM, Buch S (2007) PDGF synergistically enhances IFN-gamma-induced expression of CXCL10 in blood-derived macrophages: implications for HIV dementia. J Immunol 179:2722–2730

    PubMed  CAS  Google Scholar 

  • Dhillon N, Zhu X, Peng F, Yao H, Williams R, Qiu J, Callen S, Ladner AO, Buch S (2008a) Molecular mechanism(s) involved in the synergistic induction of CXCL10 by human immunodeficiency virus type 1 Tat and interferon-gamma in macrophages. J Neurovirol 14:196–204

    Article  PubMed  CAS  Google Scholar 

  • Dhillon NK, Williams R, Callen S, Zien C, Narayan O, Buch S (2008b) Roles of MCP-1 in development of HIV-dementia. Front Biosci 13:3913–3918

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Keller JN (2001a) Proteasome inhibition in oxidative stress neurotoxicity: implications for heat shock proteins. J Neurochem 77:1010–1017

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Keller JN (2001b) Proteasomes and proteasome inhibition in the central nervous system. Free Radic Biol Med 31:574–584

    Article  PubMed  CAS  Google Scholar 

  • Durudas A, Milush JM, Chen HL, Engram JC, Silvestri G, Sodora DL (2009) Elevated levels of innate immune modulators in lymph nodes and blood are associated with more-rapid disease progression in simian immunodeficiency virus-infected monkeys. J Virol 83:12229–12240

    Article  PubMed  CAS  Google Scholar 

  • Hegg CC, Hu S, Peterson PK, Thayer SA (2000) Beta-chemokines and human immunodeficiency virus type-1 proteins evoke intracellular calcium increases in human microglia. Neuroscience 98:191–199

    Article  PubMed  CAS  Google Scholar 

  • Holland GN (2008) AIDS and ophthalmology: the first quarter century. Am J Ophthalmol 145:397–408

    Article  PubMed  Google Scholar 

  • Hudson L, Liu J, Nath A, Jones M, Raghavan R, Narayan O, Male D, Everall I (2000) Detection of the human immunodeficiency virus regulatory protein Tat in CNS tissues. J Neurovirol 6:145–155

    Article  PubMed  CAS  Google Scholar 

  • Kelder W, McArthur JC, Nance-Sproson T, McClernon D, Griffin DE (1998) Beta-chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia. Ann Neurol 44:831–835

    Article  PubMed  CAS  Google Scholar 

  • Kim BO, Liu Y, Ruan Y, Xu ZC, Schantz L, He JJ (2003) Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am J Pathol 162:1693–1707

    Article  PubMed  CAS  Google Scholar 

  • Kolb SA, Sporer B, Lahrtz F, Koedel U, Pfister HW, Fontana A (1999) Identification of a T cell chemotactic factor in the cerebrospinal fluid of HIV-1-infected individuals as interferon-gamma inducible protein 10. J Neuroimmunol 93:172–181

    Article  PubMed  CAS  Google Scholar 

  • Kolson DL, Pomerantz RJ (1996) AIDS dementia and HIV-1-induced neurotoxicity: possible pathogenic associations and mechanisms. J Biomed Sci 3:389–414

    Article  PubMed  CAS  Google Scholar 

  • Kryczek I, Lange A, Mottram P, Alvarez X, Cheng P, Hogan M, Moons L, Wei S, Zou L, Machelon V et al (2005) CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res 65:465–472

    PubMed  CAS  Google Scholar 

  • Kutsch O, Oh J, Nath A, Benveniste EN (2000) Induction of the chemokines interleukin-8 and IP-10 by human immunodeficiency virus type 1 Tat in astrocytes. J Virol 74:9214–9221

    Article  PubMed  CAS  Google Scholar 

  • Luster AD, Jhanwar SC, Chaganti RS, Kersey JH, Ravetch JV (1987) Interferon-inducible gene maps to a chromosomal band associated with a (4;11) translocation in acute leukemia cells. Proc Natl Acad Sci USA 84:2868–2871

    Article  PubMed  CAS  Google Scholar 

  • Madigan MC, Sadun AA, Rao NS, Dugel PU, Tenhula WN, Gill PS (1996) Tumor necrosis factor-alpha (TNF-alpha)-induced optic neuropathy in rabbits. Neurol Res 18:176–184

    PubMed  CAS  Google Scholar 

  • Martin-Garcia J, Cao W, Varela-Rohena A, Plassmeyer ML, Gonzalez-Scarano F (2006) HIV-1 tropism for the central nervous system: Brain-derived envelope glycoproteins with lower CD4 dependence and reduced sensitivity to a fusion inhibitor. Virology 346:169–179

    Article  PubMed  CAS  Google Scholar 

  • McArthur JC, Hoover DR, Bacellar H, Miller EN, Cohen BA, Becker JT, Graham NM, McArthur JH, Selnes OA, Jacobson LP et al (1993) Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 43:2245–2252

    PubMed  CAS  Google Scholar 

  • Miller RJ, Meucci O (1999) AIDS and the brain: is there a chemokine connection? Trends Neurosci 22:471–479

    Article  PubMed  CAS  Google Scholar 

  • Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202:13–23

    Article  PubMed  CAS  Google Scholar 

  • Momma Y, Nagineni CN, Chin MS, Srinivasan K, Detrick B, Hooks JJ (2003) Differential expression of chemokines by human retinal pigment epithelial cells infected with cytomegalovirus. Invest Ophthalmol Vis Sci 44:2026–2033

    Article  PubMed  Google Scholar 

  • Nath A (1999) Pathobiology of human immunodeficiency virus dementia. Semin Neurol 19:113–127

    Article  PubMed  CAS  Google Scholar 

  • Navia BA, Jordan BD, Price RW (1986) The AIDS dementia complex: I. Clin features Ann Neurol 19:517–524

    CAS  Google Scholar 

  • Nottet HS (1999) Interactions between macrophages and brain microvascular endothelial cells: role in pathogenesis of HIV-1 infection and blood–brain barrier function. J Neurovirol 5:659–669

    Article  PubMed  CAS  Google Scholar 

  • Ong JM, Aoki AM, Seigel GM, Sacerio I, Castellon R, Nesburn AB, Kenney MC (2003) Oxysterol-induced toxicity in R28 and ARPE-19 cells. Neurochem Res 28:883–891

    Google Scholar 

  • Poluektova L, Moran T, Zelivyanskaya M, Swindells S, Gendelman HE, Persidsky Y (2001) The regulation of alpha chemokines during HIV-1 infection and leukocyte activation: relevance for HIV-1-associated dementia. J Neuroimmunol 120:112–128

    Article  PubMed  CAS  Google Scholar 

  • Power C, Gill MJ, Johnson RT (2002) Progress in clinical neurosciences: the neuropathogenesis of HIV infection: host–virus interaction and the impact of therapy. Can J Neurol Sci 29:19–32

    PubMed  CAS  Google Scholar 

  • Prakash O, Teng S, Ali M, Zhu X, Coleman R, Dabdoub RA, Chambers R, Aw TY, Flores SC, Joshi BH (1997) The human immunodeficiency virus type 1 Tat protein potentiates zidovudine-induced cellular toxicity in transgenic mice. Arch Biochem Biophys 343:173–180

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot AE (2002) Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2:106–15

    Article  PubMed  CAS  Google Scholar 

  • Ragaiey T, Ma JX, Jiang WJ, Greene W, Seigel GM, Stewart WC (1997) L-deprenyl protects injured retinal precursor cells in vitro. J Ocul Pharmacol Ther 13:479–88

    Article  PubMed  CAS  Google Scholar 

  • Rios LS, Vallochi AL, Muccioli C, Campos-Machado MA, Belfort R, Rizzo LV (2005) Cytokine profile in response to Cytomegalovirus associated with immune recovery syndrome after highly active antiretroviral therapy. Can J Ophthalmol 40:711–720

    PubMed  Google Scholar 

  • Saha RN, Pahan K (2003) Tumor necrosis factor-alpha at the crossroads of neuronal life and death during HIV-associated dementia. J Neurochem 86:1057–1071

    Article  PubMed  CAS  Google Scholar 

  • Sanders VJ, Pittman CA, White MG, Wang G, Wiley CA, Achim CL (1998) Chemokines and receptors in HIV encephalitis. AIDS 12:1021–1026

    Article  PubMed  CAS  Google Scholar 

  • Sanyal S, Zeilmaker GH (1977) Cell lineage in retinal development of mice studied in experimental chimaeras. Nature 265:731–733

    Article  PubMed  CAS  Google Scholar 

  • Sasseville VG, Smith MM, Mackay CR, Pauley DR, Mansfield KG, Ringler DJ, Lackner AA (1996) Chemokine expression in simian immunodeficiency virus-induced AIDS encephalitis. Am J Pathol 149:1459–1467

    PubMed  CAS  Google Scholar 

  • Schrier RD, Song MK, Smith IL, Karavellas MP, Bartsch DU, Torriani FJ, Garcia CR, Freeman WR (2006) Intraocular viral and immune pathogenesis of immune recovery uveitis in patients with healed cytomegalovirus retinitis. Retina 26:165–169

    Article  PubMed  Google Scholar 

  • Seigel GM (1996) Establishment of an E1A-immortalized retinal cell culture. In Vitro Cell Dev Biol Anim 32:66–68

    Article  PubMed  CAS  Google Scholar 

  • Seigel GM, Liu L (1997) Inducible apoptosis-promoting activity in retinal cell-conditioned medium. Mol Vis 3:14

    PubMed  CAS  Google Scholar 

  • Seigel GM, Chiu L, Paxhia A (2000) Inhibition of neuroretinal cell death by insulin-like growth factor-1 and its analogs. Mol Vis 6:157

    Google Scholar 

  • Seigel GM, Mutchler AL, Imperato EL (1996) Expression of glial markers in a retinal precursor cell line. Mol Vis 2:2

    PubMed  CAS  Google Scholar 

  • Seigel GM, Mutchler AL, Adamus G, Imperato-Kalmar EL (1997) Recoverin expression in the R28 retinal precursor cell line. In Vitro Cell Dev Biol Anim 33:499–502

    Article  PubMed  CAS  Google Scholar 

  • Seigel GM, Sun W, Wang J, Hershberger DH, Campbell LM, Salvi RJ (2004) Neuronal gene expression and function in the growth-stimulated R28 retinal precursor cell line. Curr Eye Res 28:257–269

    Google Scholar 

  • Shapshak P, Duncan R, Minagar A, Rodriguez de la Vega P, Stewart RV, Goodkin K (2004) Elevated expression of IFN-gamma in the HIV-1 infected brain. Front Biosci 9:1073–1081

    Article  PubMed  CAS  Google Scholar 

  • Steinkamp JA, Lehnert BE, Lehnert NM (1999) Discrimination of damaged/dead cells by propidium iodide uptake in immunofluorescently labeled populations analyzed by phase-sensitive flow cytometry. J Immunol Meth 226:59–70

    Article  CAS  Google Scholar 

  • Sui Y, Potula R, Dhillon N, Pinson D, Li S, Nath A, Anderson C, Turchan J, Kolson D, Narayan O, Buch S (2004) Neuronal apoptosis is mediated by CXCL10 overexpression in simian human immunodeficiency virus encephalitis. Am J Pathol 164:1557–1566

    Article  PubMed  CAS  Google Scholar 

  • Sui Y, Stehno-Bittel L, Li S, Loganathan R, Dhillon NK, Pinson D, Nath A, Kolson D, Narayan O, Buch S (2006) CXCL10-induced cell death in neurons: role of calcium dysregulation. Eur J Neurosci 23:957–964

    Article  PubMed  Google Scholar 

  • Sun W, Seigel GM, Salvi RJ (2002) Retinal precursor cells express functional ionotropic glutamate and GABA receptors. NeuroReport 13:2421–4

    Article  PubMed  CAS  Google Scholar 

  • van Marle G, Henry S, Todoruk T, Sullivan A, Silva C, Rourke SB, Holden J, McArthur JC, Gill MJ, Power C (2004) Human immunodeficiency virus type 1 Nef protein mediates neural cell death: a neurotoxic role for IP-10. Virology 329:302–318

    PubMed  Google Scholar 

  • Venkatesh KK, Biswas J, Kumarasamy N (2008) Impact of highly active antiretroviral therapy on ophthalmic manifestations in human immunodeficiency virus/acquired immune deficiency syndrome. Indian J Ophthalmol 56:391–3

    Article  PubMed  Google Scholar 

  • Wesselingh SL, Takahashi K, Glass JD, McArthur JC, Griffin JW, Griffin DE (1997) Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. J Neuroimmunol 74:1–8

    Article  PubMed  CAS  Google Scholar 

  • Westmoreland SV, Rottman JB, Williams KC, Lackner AA, Sasseville VG (1998) Chemokine receptor expression on resident and inflammatory cells in the brain of macaques with simian immunodeficiency virus encephalitis. Am J Pathol 152:659–665

    PubMed  CAS  Google Scholar 

  • Wetzel MA, Steele AD, Henderson EE, Rogers TJ (2002) The effect of X4 and R5 HIV-1 on C, C–C, and C–X–C chemokines during the early stages of infection in human PBMCs. Virology 292:6–15

    Article  PubMed  CAS  Google Scholar 

  • Woodman SE, Benveniste EN, Nath A, Berman JW (1999) Human immunodeficiency virus type 1 TAT protein induces adhesion molecule expression in astrocytes. J Neurovirol 5:678–684

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Sabita Roy, University of Minnesota for providing the HIV-1 Tat-transgenic mice eyeballs. The authors also thank the Confocal Laser Scanning Microscope Core Facility at the University of Nebraska Medical Center for providing assistance with confocal microscopy and the Nebraska Research Initiative and the Eppley Cancer Center for their support of the Core Facility. We thank Dr. Sitabhra Sinha for his help in generating Fig. 2 with MATLAB. NC was supported by the Indian Council of Medical Research Young Biomedical Scientist Fellowship while working at UNMC on this work. GMS is supported by R21CA127061, a departmental challenge grant from Research to Prevent Blindness and a Vision Research core infrastructure grant 1R24EY016662 and by U54CA143876 from the National Cancer Institute.

Guarantors

Nivedita Chatterjee, Shilpa J. Buch

Disclaimers

The authors have no conflicting interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nivedita Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, N., Callen, S., Seigel, G.M. et al. HIV-1 Tat-Mediated Neurotoxicity in Retinal Cells. J Neuroimmune Pharmacol 6, 399–408 (2011). https://doi.org/10.1007/s11481-011-9257-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-011-9257-8

Keywords

Navigation