Skip to main content
Log in

Achieving a Wonderful Efficiency Enhancement in Ultra-thin Film Perovskite Solar Cells, Utilizing a Single-Step Grating (SSG) Structure and Plasmonic Ag Nanoparticle

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This article demonstrates a significant enhancement in the efficiency of an ultra-thin film perovskite solar cell. This has been achieved through the combination of a single-step grating (SSG) structure with metal nanoparticles. To investigate this phenomenon, a comparison is conducted between the proposed structure and plasmonic flat solar cell, by evaluating optical and electrical parameters. In both cases, hollowed cubic and cylindrical silver nanoparticles are utilized on the back surface of the active layer, and their size is optimized, considering metal absorption losses. Additionally, to eliminate the negative impact of perovskite on metals, a Si3N4 dielectric shell is added to the optimized nanoparticles. As a result, the proposed case in this study achieved an efficiency of 25.95%, displaying a 50% improvement compared to the plasmonic flat sample (with an efficiency of 17.40%). In summary, while the individual grating exhibits poor performance in thin active layers, its inclusion in solar cells has greatly enhanced the plasmonic effect of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Sun C, Zou Y, Qin C, Zhang B, Wu X (2022) Temperature effect of photovoltaic cells: a review. Advanced Composites and Hybrid Materials 5(4):2675–2699

    Article  Google Scholar 

  2. Zhang Z, Qiao L, Meng K, Long R, Chen G, Gao P (2023) Rationalization of passivation strategies toward high-performance perovskite solar cells. Chem Soc Rev 52(1):163–195

    Article  CAS  PubMed  Google Scholar 

  3. Asadzade A, Miandoab SA (2021) Design and simulation of 3D perovskite solar cells based on titanium dioxide nanowires to achieve high-efficiency. Sol Energy 1(228):550–561

    Article  Google Scholar 

  4. Kim M, Choi IW, Choi SJ, Song JW, Mo SI, An JH, Jo Y, Ahn S, Ahn SK, Kim GH, Kim DS (2021) Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells. Joule 5(3):659–672

    Article  CAS  Google Scholar 

  5. Sekar K, Marasamy L, Mayarambakam S, Hawashin H, Nour M, Bouclé J (2023) Lead-free, formamidinium germanium-antimony halide (FA 4 GeSbCl 12) double perovskite solar cells: the effects of band offsets. RSC Adv 13(36):25483–25496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharif R, Khalid A, Ahmad SW, Rehman A, Qutab HG, Akhtar HH, Mahmood K, Afzal S, Saleem F (2023) A comprehensive review on the current progress and material advances in perovskite solar cells. Nanoscale Advances

  7. Irandoost R, Soleimani-Amiri S (2020) Design and analysis of high efficiency perovskite solar cell with ZnO nanorods and plasmonic nanoparticles. Optik 1(202):163598

    Article  Google Scholar 

  8. Chen Y, Du C, Sun L, Fu T, Zhang R, Rong W, Cao S, Li X, Shen H, Shi D (2021) Improved optical properties of perovskite solar cells by introducing Ag nanopartices and ITO AR layers. Sci Rep 11(1):14550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carretero-Palacios S, Jiménez-Solano A, Míguez H (2016) Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user’s guide. ACS Energy Lett 1(1):323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghahremanirad E, Olyaee S, Hedayati M (2019) The influence of embedded plasmonic nanostructures on the optical absorption of perovskite solar cells. MDPI 6(2):37

    CAS  Google Scholar 

  11. Mahmudin L, Suharyadi E, Utomo AB, Abraha K (2015) Optical properties of silver nanoparticles for surface plasmon resonance (SPR)-based biosensor applications. J Mod Phys 6(08):1071

    Article  CAS  Google Scholar 

  12. Heidarzadeh H (2018) Comprehensive investigation of core-shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic-inorganic halide perovskite solar cell. Materials Research Express 5(3):036208

    Article  Google Scholar 

  13. hosein Mohammad M, Eskandari M, Fathi D (2021) Effects of the location and size of plasmonic nanoparticlesin (Ag and Au) improving the optical absorption and efficiency of perovskite solar cells. J Alloys Compd 877:160177

    Article  Google Scholar 

  14. Jangjoy A, Matloub S (2022) Optical simulation and design of high-absorption thin-film perovskite halide solar cells based on embedded quadrilateral cluster nanoparticles. Sol Energy 1(242):10–19

    Article  Google Scholar 

  15. Elrashidi A, Elleithy K (2022) High performance polymer solar cells using grating nanostructure and plasmonic nanoparticles. Polymers 14(5):862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiao S, Xu F, Bai Y, Xiao J, Zhang T, Hu C, Meng X, Tan H, Ho HP, Yang S (2019) An ultra-low concentration of gold nanoparticles embedded in the NiO hole transport layer boosts the performance of p-i-n perovskite solar cells. Solar RRL 3(2):1800278

    Article  Google Scholar 

  17. Lin YT, Kumar G, Chen FC (2020) Interfacial plasmonic effects of gold nanoparticle-decorated graphene oxides on the performance of perovskite photovoltaic devices. Sol Energy 15(211):822–830

    Article  Google Scholar 

  18. Quazi MM, Fazal MA, Haseeb AS, Yusof F, Masjuki HH, Arslan A (2016) Laser-based surface modifications of aluminum and its alloys. Crit Rev Solid State Mater Sci 41(2):106–131

    Article  CAS  Google Scholar 

  19. Phillips LJ, Rashed AM, Treharne RE, Kay J, Yates P, Mitrovic IZ, Weerakkody A, Hall S, Durose K (2015) Dispersion relation data for methylammonium lead triiodide perovskite deposited on a (100) silicon wafer using a two-step vapour-phase reaction process. Data Brief 1(5):926–928

    Article  Google Scholar 

  20. Filipič M, Löper P, Niesen B, De Wolf S, Krč J, Ballif C, Topič M (2015) CH 3 NH 3 PbI 3 perovskite/silicon tandem solar cells: characterization based optical simulations. Opt Express 23(7):A263–A278

    Article  PubMed  Google Scholar 

  21. Zarerasouli P, Bahador H, Heidarzadeh H (2023) Design of an efficient ultra-thin film Cu (In, Ga) Se2 solar cell, using plasmonic cluster back reflectors. Sol Energy 1(261):1–6

    Article  Google Scholar 

  22. Zarerasouli P, Bahador H, Heidarzadeh H (2022) Performance improvement of an ultra-thin film solar cell based on optimized CIGS (Cu (In1-x, Gax) Se2) using appropriate plasmonic nanoparticles. Opt Mater 1(131):112729

    Article  Google Scholar 

  23. Rühle S (2016) Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol Energy 1(130):139–147

    Article  Google Scholar 

  24. Das AK (2011) An explicit J-V model of a solar cell for simple fill factor calculation. Sol Energy 85(9):1906–1909

    Article  Google Scholar 

  25. Tabrizi AA, Saghaei H, Mehranpour MA, Jahangiri M (2021) Enhancement of absorption and effectiveness of a perovskite thin-film solar cell embedded with gold nanospheres. Plasmonics 16:747–760

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Parisa Zarerasouli: Methodology, Software, Investigation, Resources, Writing - Original Draft Hamid Bahador: Validation, Conceptualization, Writing - Review & Editing, Supervision All authors reviewed the manuscript.

Corresponding author

Correspondence to Hamid Bahador.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarerasouli, P., Bahador, H. Achieving a Wonderful Efficiency Enhancement in Ultra-thin Film Perovskite Solar Cells, Utilizing a Single-Step Grating (SSG) Structure and Plasmonic Ag Nanoparticle. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02346-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02346-w

Keywords

Navigation