Skip to main content
Log in

Solar absorbance enhancement in perovskite solar cells with the inclusion of copper nanoparticles: an architectural study

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper we have studied the geometrical and material aspects of plasmonic nanoparticles embedded within organic–inorganic halide Perovskite solar cells (PSCs), to achieve higher solar absorbance enhancement. The material choice of the nanoparticle employed within the film is proportional to the enhancement factor the cell. Interestingly, we observe that copper nanoparticles produce similar absorbance like other conventional metals such as gold and silver. With the existing PSCs designs, high production costs serve as a paramount threat to its commercialization. The utilisation of copper could significantly lower this cost without compromising the solar absorbance of the cell. The size and location of the particle within the 200 nm thick perovskite film are also critically analysed to improve the solar absorbance of the designed solar cell. Results portray that the maximum enhancement can be attained with the inclusion of spherical nanoparticles of 70 nm radii, placed at the center of the film. This work also highlights the impact of different morphologies of plasmonic nanoparticles including sphere, cuboid and ellipsoid integrated with the cell. It is further extended to different geometrical orientations of nanoellipsoids naming oblate and prolate. To avoid a red shift in the resonance wavelength occurring due to plasmonic coupling, the dimer formation of these particles is also taken into account. We mark 30 nm as a safe plasmonic distance for two spherical nanoparticles of radii 30 nm embedded within the film to avoid this effect. The entire study has been conducted using finite difference time domain (FDTD) method of simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  • Batmunkh, M., Macdonald, T.J., Peveler, W.J., Bati, A.S.R., Carmalt, C.J., Parkin, I.P., Shapter, J.G.: Plasmonic gold nanostars incorporated into high-efficiency perovskite solar cells. ChemSus Chem. 10, 3750–3753 (2017)

    Article  Google Scholar 

  • Carretero-Palacios, S., Calvo, M.E., Míguez, H.: Absorption enhancement in organic- inorganic halide perovskite films with embedded plasmonic gold nanoparticles. J. Phys. Chem. C Nanomater Interfaces. 119(32), 18635–18640 (2015). https://doi.org/10.1021/acs.jpcc.5b06473

    Article  Google Scholar 

  • Carretero-Palacios, S., Jiménez-Solano, A., Míguez, H.: Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user’s guide. ACS Energy Lett. 1, 323–331 (2016)

    Article  Google Scholar 

  • Cui, J., Chen, C., Han, J., Cao, K., Zhang, W., Shen, Y., Wang, M.: Surface plasmon resonance effect in inverted perovskite solar cells. Adv. Sci. 3, 1–8 (2016)

    Google Scholar 

  • Dabirian, A., Byranvand, M.M., Naqavi, A., Kharat, A.N., Taghavinia, N.: Self- assembled monolayer of wavelength-scale core–shell particles for low-loss plasmonic and broadband light trapping in solar cells. ACS Appl. Mater. Interfaces 8, 247–255 (2016)

    Article  Google Scholar 

  • Fan, R., Wang, L., Chen, Y., Zheng, G., Li, L., Li, Z., Zhou, H.: Tailored Au@TiO2 nanostructures for the plasmonic effect in planar perovskite solar cells. J. Mater. Chem. A. 5, 12034–12042 (2017)

    Article  Google Scholar 

  • Filipič, M., Löper, P., Niesen, B., de Wolf, S., Krč, J., Ballif, C., Topič, M.: CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations. Opt. Exp. 23, A263–A278 (2015)

    Article  Google Scholar 

  • Ghahremanirad, E., Bou, A., Olyaee, S., Bisquert, J.: Inductive loop in the impedance response of perovskite solar cells explained by surface polarization model. J. Phys. Chem. Lett. 8, 1402–1406 (2017)

    Article  Google Scholar 

  • Ghahremanirad, E., Olyaee, S., Nejand, B.A., Ahmadi, V., Abedi, K.: Hexagonal array of mesoscopic HTM-based perovskite solar cell with embedded plasmonic nanoparticles. Phys. Status Solidi B 255, 1–8 (2018)

    Article  Google Scholar 

  • Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014)

    Article  ADS  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)

    Article  ADS  Google Scholar 

  • Luo, A.Z.Q., Shi, J., Yue, L., Wang, Z., Chen, X., Huang, S.: Efficient perovskite solar cells by combination use of Au nanoparticles and insulating metal oxide. Nanoscale. 9, 2852–2864 (2017a)

    Article  Google Scholar 

  • Luo, Q., Zhang, C., Deng, X., Zhu, H., Li, Z., Wang, Z., Chen, X., Huang, S.: Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells. ACS Appl. Mater. Interfaces 9, 34821–34832 (2017b)

    Article  Google Scholar 

  • Omelyanovich, M., Makarov, S., Milichko, V., Simovski, C.: Enhancement of perovskite solar cells by plasmonic nanoparticles. Mater. Sci. Appl. 7, 836–847 (2016)

    Google Scholar 

  • Pathak, N.K., Chander, N., Komarala, V.K., et al.: Plasmonic Perovskite Solar Cells Utilizing Au@SiO2 Core-Shell Nanoparticles. Plasmonics 12, 237–244 (2017)

    Article  Google Scholar 

  • Perrakis, G., Kakavelakis, G., Kenanakis, G., Petridis, C., Stratakis, E., Kafesaki, M., Kymakis, E.: Efficient and environmental-friendly perovskite solar cells via embedding plasmonic nanoparticles: an optical simulation study on realistic device architectures. Opt. Express 27, 31144–31163 (2019)

    Article  ADS  Google Scholar 

  • Qiang, Fu., Sun, W.: Mie theory for light scattering by a spherical particle in an absorbing medium. Appl. Opt. 40, 1354–1361 (2001)

    Article  ADS  Google Scholar 

  • Saliba, M., Zhang, W., Burlakov, V.M., Stranks, S.D., Sun, Y., Ball, J.M., Johnston, M.B., Goriely, A., Wiesner, U., Snaith, H.J.: Plasmonic-induced photon recycling in metal halide perovskite solar cells. Adv. Funct. Mater. 25, 5038–5046 (2015)

    Article  Google Scholar 

  • Wriedt, T.: Mie theory: a review. In: Hergert, W., Wriedt, T. (eds.) The Mie. Theory Springer Series in Optical Sciences, vol. 169. Springer, Berlin Heidelberg (2012)

    Google Scholar 

  • Zhang, W., Saliba, M., Stranks, S.D., Sun, Y., Shi, X., Wiesner, U., Snaith, H.J.: Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles. Nano Lett. 13, 4505–4510 (2013)

    Article  ADS  Google Scholar 

  • Zhang, W., Anaya, M., Lozano, G., Calvo, M.E., Johnston, M.B., Míguez, H., Snaith, H.J.: Highlyefficientperovskitesolarcellswithtunablestructuralcolor. Nano Lett. 15, 1698–1702 (2015)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreya Sahai.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahai, S., Varshney, A. Solar absorbance enhancement in perovskite solar cells with the inclusion of copper nanoparticles: an architectural study. Opt Quant Electron 53, 111 (2021). https://doi.org/10.1007/s11082-021-02755-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02755-9

Keywords

Navigation