Skip to main content

Advertisement

Log in

Utility of Localized Surface Plasmon Resonance of Gold Nanoparticles for Spectrophotometric Determination of Dobutamine in Pharmaceutical Formulations

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Dobutamine is a frequently employed β-adrenergic receptor agonist that is utilized to provide cardiac hemodynamic support and for stress testing in echocardiography. This study introduces a spectrophotometric method for quantifying dobutamine by utilizing the localized surface plasmon resonance (SPR) characteristic of gold nanoparticles. A band of SPR is generated through the reduction of gold ions using dobutamine as a reducing agent. Experiment optimization was achieved by investigating the effects of the reaction variables, such as the formation time of the produced gold nanoparticles, volume of reagent, and volume stabilizer. Transmission electron microscopic and scanning electron microscopic analyses were conducted to verify and identify the formation of gold nanoparticles. Furthermore, the formed nanoparticles were characterized by the dynamic light scattering (zetasizer) technique. The proposed approach underwent validation in accordance with the ICH recommendations. In the best conditions, the statistical analysis showed that the absorbance of gold nanoparticles at 525 nm was directly linked to the concentration of dobutamine in the range of 0.5 to 2.0 µg/mL, with a detection limit of 0.072 µg/mL. The suggested colorimetric assay demonstrates good repeatability and accuracy, offering a straightforward and expeditious approach to analyzing dobutamine. In addition, the developed method was successfully utilized for determining dobutamine in pharmaceutical ampoule samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used and/or analyzed in the current study are provided in the submitted article.

References

  1. Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA et al (2008) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008 the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008: of the European Society of Cardiology Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J 29(19):2388–442

    Article  CAS  PubMed  Google Scholar 

  2. Tacon CL, McCaffrey J, Delaney A (2012) Dobutamine for patients with severe heart failure: a systematic review and meta-analysis of randomised controlled trials. Intensive Care Med 38:359–367

    Article  CAS  PubMed  Google Scholar 

  3. Ince B, Uyanik O, Ismayilzade M, Yildirim MEC, Dadaci M (2023) The effect of dobutamine treatment on salvage of digital replantation and revascularization. Eur J Trauma Emerg Surg 49(5):2113–2120. https://doi.org/10.1007/s00068-023-02312-x

    Article  PubMed  Google Scholar 

  4. Brew N, Nakamura S, Hale N, Azhan A, Davies GI, Nitsos I et al (2018) Dobutamine treatment reduces inflammation in the preterm fetal sheep brain exposed to acute hypoxia. Pediatr Res 84(3):442–450. https://doi.org/10.1038/s41390-018-0045-5

    Article  CAS  PubMed  Google Scholar 

  5. Markus T, Ley D, Hansson SR, Wieloch T, Ruscher K (2018) Neuroprotective dobutamine treatment upregulates superoxide dismutase 3, anti-oxidant and survival genes and attenuates genes mediating inflammation. BMC Neurosci 19(1):9. https://doi.org/10.1186/s12868-018-0415-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thippani R, Pothuraju NR, Ramisetti NR, Shaik S (2013) Optimization and validation of a fast RP–HPLC method for the determination of dobutamine in rat plasma: pharmacokinetic studies in healthy rat subjects. J Pharm Anal 3(6):434–439

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen F, Fang B, Wang S (2021) A fast and validated HPLC method for simultaneous determination of dopamine, dobutamine, phentolamine, furosemide, and aminophylline in infusion samples and injection formulations. J Anal Methods Chem. https://doi.org/10.1155/2021/8821126

    Article  PubMed  PubMed Central  Google Scholar 

  8. Albóniga OE, Alonso ML, Blanco ME, González O, Grisaleña A, Campanero MA et al (2017) Quantitative determination of dobutamine in newborn pig plasma samples by HPLC–MS/MS. J Pharm Biomed Anal 145:178–185. https://doi.org/10.1016/j.jpba.2017.06.050

    Article  CAS  PubMed  Google Scholar 

  9. Husseini H, Mitrovic V, Schlepper M (1993) Rapid and sensitive assay of dobutamine in plasma by high-performance liquid chromatography and electrochemical detection. J Chromatogr B Biomed Sci Appl 620(1):164–168

    Article  CAS  Google Scholar 

  10. Iranifam M, Babakalak PR, Imani-Nabiyyi A, Abolghasemi MM, Khataee A (2016) Graphene oxide induced chemiluminescence used for quenchometric determination of dobutamine hydrochloride. Anal Methods 8(17):3496–3502

    Article  CAS  Google Scholar 

  11. Atta NF, Galal A, Ahmed YM, Ekram H (2019) Design strategy and preparation of a conductive layered electrochemical sensor for simultaneous determination of ascorbic acid, dobutamine, acetaminophen and amlodipine. Sens Actuators, B Chem 297:126648

    Article  CAS  Google Scholar 

  12. Asadian E, Shahrokhian S, Jokar E (2014) In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: application to sensitive electrochemical detection of dobutamine. Sens Actuators, B Chem 196:582–588

    Article  CAS  Google Scholar 

  13. Tian FS, Chen YH, Liang HY (2014) Determination of dobutamine hydrochloride by enzymatic catalytic spectrofluorimetry. Lumin 29(1):92–95

    CAS  Google Scholar 

  14. Roopa K, Jayanna B, Nagaraja P (2015) Spectrophotometric determination of dobutamine hydrochloride in pharmaceutical formulations. Int J Pharm Sci Rev Res 32(1):55–60

    CAS  Google Scholar 

  15. Sayanna K, Venkateshwarlu G (2013) Spectrophotometric determination of cardiovascular drugs. Int J Modern Eng Res 3:3079–3085

    Google Scholar 

  16. El-Kommos ME (1983) Spectrophotometric method for the determination of dobutamine hydrochloride. Analyst 108(1284):380–385

    Article  CAS  PubMed  Google Scholar 

  17. El-Kommos ME (1987) Spectrophotometric determination of dobutamine hydrochloride using 3-methylbenzothiazolin-2-one hydrazone. Analyst 112(1):101–103

    Article  CAS  PubMed  Google Scholar 

  18. Zamborini FP, Bao L, Dasari R (2012) Nanoparticles in measurement science. Anal Chem 84(2):541–576. https://doi.org/10.1021/ac203233q

    Article  CAS  PubMed  Google Scholar 

  19. Abdel-Lateef MA, Albalawi MA, Al-Ghamdi SN, Mahdi WA, Alshehri S, El Hamd MA (2023) Determination of metanil yellow dye in turmeric powder using a unique fluorescence Europium doped carbon dots. Spectrochim Acta Part A Mol Biomol Spectrosc 287:122124

    Article  CAS  Google Scholar 

  20. Albalawi MA, Gomaa H, El Hamd MA, Abourehab MA, Abdel-Lateef MA (2023) Detection of Indigo Carmine dye in juices via application of photoluminescent europium-doped carbon dots from tannic acid. Luminescence 38(2):92–98

    Article  CAS  PubMed  Google Scholar 

  21. Abdel-Lateef MA, Alzahrani E, Pashameah RA, Almahri A, Abu-Hassan AA, El Hamd MA et al (2022) A specific turn-on fluorescence probe for determination of nitazoxanide based on feasible oxidation reaction with hypochlorite: applying cobalt ferrite nanoparticles for pre-concentration and extraction of its metabolite from real urine samples. J Pharm Biomed Anal 219:114941

    Article  CAS  PubMed  Google Scholar 

  22. AlSalem HS, Binkadem MS, Al-Goul ST, Abdel-Lateef MA (2023) Synthesis of green emitted carbon dots from Vachellia nilotica and utilizing its extract as a red emitted fluorescence reagent: applying for visual and spectroscopic detection of iron (III). Spectrochim Acta Part A Mol Biomol Spectrosc 295:122616

    Article  Google Scholar 

  23. Al-Goul ST, AlSalem HS, Binkadem MS, El Hamd MA, Alsaggaf WT, Saleh SF et al (2023) Synthesis of photoluminescence carbon dots from red beetroot and utilizing its extract as blue-emitted fluorescence probes for spectrofluorimetric determination of tenoxicam in varied pharmaceutical samples. J Photochem Photobiol, A 445:115028

    Article  Google Scholar 

  24. He S, Liu D, Wang Z, Cai K, Jiang X (2011) Utilization of unmodified gold nanoparticles in colorimetric detection. Science China Physics, Mechanics and Astronomy 54:1757–1765

    Article  Google Scholar 

  25. Zargar B, Hatamie A (2013) Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation. Spectrochim Acta Part A Mol Biomol Spectrosc 106:185–189

    Article  CAS  Google Scholar 

  26. Ali R, Ali HRH, Batakoushy HA, Derayea SM, Elsutohy MM (2019) A reductant colorimetric method for the rapid detection of certain cephalosporins via the production of gold and silver nanoparticles. Microchem J 146:864–871

    Article  CAS  Google Scholar 

  27. Baron R, Zayats M, Willner I (2005) Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 77(6):1566–1571

    Article  CAS  PubMed  Google Scholar 

  28. Kailasa SK, Koduru JR, Desai ML, Park TJ, Singhal RK, Basu H (2018) Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samples. TrAC, Trends Anal Chem 105:106–120

    Article  CAS  Google Scholar 

  29. Abdel Hamid M, Habib A, Mabrouk M, Hammad S, Elshahawy M (2023) Formation of plasmonic silver nanoparticles by glucosamine reduction: application to a colorimetric sensor for determination of glucosamine in its pharmaceutical preparations. J Pharm Biomed Anal 236:115705. https://doi.org/10.1016/j.jpba.2023.115705

    Article  CAS  PubMed  Google Scholar 

  30. Misra N, Biswal J, Gupta A, Sainis J, Sabharwal S (2012) Gamma radiation induced synthesis of gold nanoparticles in aqueous polyvinyl pyrrolidone solution and its application for hydrogen peroxide estimation. Radiat Phys Chem 81(2):195–200

    Article  CAS  Google Scholar 

  31. Wang H, Qiao X, Chen J, Wang X, Ding S (2005) Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys 94(2–3):449–453

    Article  CAS  Google Scholar 

  32. Abdel-Lateef MA (2022) Utilization of the peroxidase-like activity of silver nanoparticles nanozyme on O-phenylenediamine/H2O2 system for fluorescence detection of mercury (II) ions. Sci Rep 12(1):6953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abdel-Lateef MA, Almahri A, Alzahrani E, Pashameah RA, Abu-Hassan AA, El Hamd MA (2022) Sustainable PVP-capped silver nanoparticles as a free-standing nanozyme sensor for visual and spectrophotometric detection of Hg2+ in water samples: a green analytical method. Chemosensors 10(9):358

    Article  CAS  Google Scholar 

  34. Al-Onazi WA, Abdel-Lateef MA (2022) Catalytic oxidation of O-phenylenediamine by silver nanoparticles for resonance Rayleigh scattering detection of mercury (II) in water samples. Spectrochim Acta Part A Mol Biomol Spectrosc 264:120258

    Article  CAS  Google Scholar 

  35. Innocenti A, Gülçin I, Scozzafava A, Supuran CT (2010) Carbonic anhydrase inhibitors.Antioxidant polyphenols effectively inhibit mammalian isoforms I-XV. Bioorg Med Chem Lett 20(17):5050–3

    Article  CAS  PubMed  Google Scholar 

  36. Hidayah AN, Triyono D, Herbani Y, Saleh R (2023) Tuning size and shape of gold nanoparticles using seed-mediated growth by unfocused femtosecond laser-induced plasma. Opt Lett 48(8):2126–2129

    Article  CAS  PubMed  Google Scholar 

  37. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862. https://doi.org/10.1021/cr0680282

    Article  CAS  PubMed  Google Scholar 

  38. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217

    Article  CAS  PubMed  Google Scholar 

  39. Li C, Li D, Wan G, Xu J, Hou W (2011) Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and pH controls. Nanoscale Res Lett 6(1):440. https://doi.org/10.1186/1556-276X-6-440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abdel-Lateef MA, Darwish IA, Gomaa H, Katamesh NS (2024) Development of eco-friendly scattering and fluorimetric methods for the determination of clemastine through its interaction with eosin Y: assessment of whiteness, blueness, and greenness tools. J Fluoresc. 1–12

  41. AlSalem HS, Alharbi SN, Binkadem MS, Mahmoud SA, Abdel-Lateef MA (2024) Study on the interaction between erythrosine B and the cardiac drug amiodarone using fluorescence, scattering, and absorbance spectra and their analytical application. Luminescence 39(4):e4748. https://doi.org/10.1002/bio.4748

    Article  PubMed  Google Scholar 

  42. Abdel-Lateef MA, Ali R, Omar MA, Derayea SM (2019) Novel spectrofluorimetric approach for determination of ledipasvir through UV-irradiation: application to biological fluids, pharmacokinetic study and content uniformity test. RSC Adv 9(59):34256–34264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project Number (RSPD2024R944), King Saud University, Riyadh, Saudi Arabia, for funding this research work.

Funding

The authors received funding from the King Saud University, Riyadh, Saudi Arabia, Researchers Supporting Project Number (RSPD2024R944) for this research work.

Author information

Authors and Affiliations

Authors

Contributions

M.A., H.G. and I.D. wrote the main manuscript text and carried out the methodology, Writing - Review & Editing, Conceptualization, Investigation, Resources, Visualization, Data Curation, Validation, Supervision, Project administration.

Corresponding author

Correspondence to Mohamed A. Abdel-Lateef.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Lateef, M.A., Gomaa, H. & Darwish, I.A. Utility of Localized Surface Plasmon Resonance of Gold Nanoparticles for Spectrophotometric Determination of Dobutamine in Pharmaceutical Formulations. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02331-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02331-3

Keywords

Navigation