Skip to main content
Log in

Utilization of unmodified gold nanoparticles in colorimetric detection

  • Review
  • Special Topic: Nanomaterials
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

This review begins with an overview of the appealing properties and various applications of gold nanoparticles, and briefly summarizes recent advances in using unmodified gold nanoparticles to detect different kinds of targets including nucleic acids, proteins, metal ions and small organic molecules. The key point to the unmodified gold nanoparticle-based visual detection assay is to control dispersion and aggregation of colloidal nanoparticles by targets of interest, which usually relies on affinities between gold nanoparticles and targets. The degree of dispersion or aggregation can be visualized through the change of the solution color or the precipitation of nanoparticles from the solution. Thus, the existence of the target molecules can be translated into optical signals and monitored by the naked eye conveniently. Finally, some future prospects of this research field are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giljohann D A, Mirkin C A. Drivers of biodiagnostic development. Nature, 2009, 462: 461–464

    Article  ADS  Google Scholar 

  2. Rosi N L, Mirkin C A. Nanostructures in biodiagnostics. Chem Rev, 2005, 105: 1547–1562

    Article  Google Scholar 

  3. Sun Y, Liu Y Y, Qu W S, et al. Combining nanosurface chemistry and microfluidics for molecular analysis and cell biology. Anal Chim Acta, 2009, 650: 98–105

    Article  Google Scholar 

  4. Agasti S S, Rana S, Park M H, et al. Nanoparticles for detection and diagnosis. Adv Drug Delivery Rev, 2010, 62: 316–328

    Article  Google Scholar 

  5. Azzazy H M E, Mansour M M H, Kazmierczak S C. Nanodiagnostics: A new frontier for clinical laboratory medicine. Clin Chem, 2006, 52: 1238–1246

    Article  Google Scholar 

  6. Zhao W, Brook M A, Li Y F. Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem, 2008, 9: 2363–2371

    Article  Google Scholar 

  7. Thaxton C S, Georganopoulou D G, Mirkin C A. Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta, 2006, 363: 120–126

    Article  Google Scholar 

  8. Daniel M C, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev, 2004, 104: 293–346

    Article  Google Scholar 

  9. Ghosh P, Han G, De M, et al. Gold nanoparticles in delivery applications. Adv Drug Delivery Rev, 2008, 60: 1307–1315

    Article  Google Scholar 

  10. Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev, 2006, 35: 209–217

    Article  Google Scholar 

  11. Song S P, Qin Y, He Y, et al. Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev, 2010, 39: 4234–4243

    Article  Google Scholar 

  12. Wang Z X, Ma L N. Gold nanoparticle probes. Coord Chem Rev, 2009, 253: 1607–1618

    Article  Google Scholar 

  13. Murphy C J, Gole A M, Stone J W, et al. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc Chem Res, 2008, 41: 1721–1730

    Article  Google Scholar 

  14. Mirkin C A. The polyvalent gold nanoparticle conjugate-materials synthesis, biodiagnostics, and intracellular gene regulation. MRS Bull 2010, 35: 532–539

    Article  Google Scholar 

  15. Giljohann D A, Seferos D S, Daniel W L, et al. Gold nanoparticles for biology and medicine. Angew Chem Int Ed, 2010, 49: 3280–3294

    Google Scholar 

  16. Jain P K, El-Sayed I H, El-Sayed M A. Au nanoparticles target cancer. Nano Today, 2007, 2: 18–29

    Article  Google Scholar 

  17. Huang X H, Jain P K, El-Sayed I H, et al. Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine, 2007, 2: 681–693

    Article  Google Scholar 

  18. Han G, Ghosh P, Rotello V M. Functionalized gold nanoparticles for drug delivery. Nanomedicine, 2007, 2: 113–123

    Article  Google Scholar 

  19. Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev, 2009, 38: 1759–1782

    Article  Google Scholar 

  20. Cobley C M, Chen J Y, Cho E C, et al. Gold nanostructures: A class of multifunctional materials for biomedical applications. Chem Soc Rev, 2011, 40: 44–56

    Article  Google Scholar 

  21. Sperling R A, Rivera G P, Zhang F, et al. Biological applications of gold nanoparticles. Chem Soc Rev, 2008, 37: 1896–1908

    Article  Google Scholar 

  22. Wilson R. The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev, 2008, 37: 2028–2045

    Article  Google Scholar 

  23. Hu M, Chen J Y, Li Z Y, et al. Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem Soc Rev, 2006, 35: 1084–1094

    Article  Google Scholar 

  24. Ghosh S K, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem Rev, 2007, 107: 4797–4862

    Article  Google Scholar 

  25. Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem, 2007, 58: 267–297

    Article  ADS  Google Scholar 

  26. Sepulveda B, Angelome P C, Lechuga L M, et al. LSPR-based nanobiosensors. Nano Today, 2009, 4: 244–251

    Article  Google Scholar 

  27. Zhang J, Song S P, Wang L H, et al. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat Prot, 2007, 2: 2888–2895

    Article  Google Scholar 

  28. Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Prot, 2006, 1: 246–252

    Article  Google Scholar 

  29. Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382: 607–609

    Article  ADS  Google Scholar 

  30. Alivisatos A P, Johnsson K P, Peng X G, et al. Organization of “nanocrystal molecules” using DNA. Nature, 1996, 382: 609–611

    Article  ADS  Google Scholar 

  31. Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277: 1078–1081

    Article  Google Scholar 

  32. Baptista P, Pereira E, Eaton P, et al. Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem, 2008, 391: 943–950

    Article  Google Scholar 

  33. Lin Y W, Liu C W, Chang H T. DNA functionalized gold nanoparticles for bioanalysis. Anal Method, 2009, 1: 14–24

    Article  Google Scholar 

  34. Knecht M R, Sethi M. Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles. Anal Bioanal Chem, 2009, 394: 33–46

    Article  Google Scholar 

  35. Storhoff J J, Elghanian R, Mucic R C, et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc, 1998, 120: 1959–1964

    Article  Google Scholar 

  36. Storhoff J J, Lucas A D, Garimella V, et al. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol, 2004, 22: 883–887

    Article  Google Scholar 

  37. Xu W, Xue X J, Li T H, et al. Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew Chem Int Ed, 2009, 48: 6849–6852

    Article  Google Scholar 

  38. Nam J M, Jang K J, Groves J T. Detection of proteins using a colorimetric bio-barcode assay. Nat Prot, 2007, 2: 1438–1444

    Article  Google Scholar 

  39. Aili D, Selegard R, Baltzer L, et al. Colorimetric protein sensing by controlled assembly of gold nanoparticles functionalized with synthetic receptors. Small, 2009, 5: 2445–2452

    Article  Google Scholar 

  40. Ou L J, Jin P Y, Chu X, et al. Sensitive and visual detection of sequence-specific DNA-binding protein via a gold nanoparticle-based colorimetric biosensor. Anal Chem, 2010, 82: 6015–6024

    Article  Google Scholar 

  41. Jiang Y, Zhao H, Zhu N N, et al. A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles. Angew Chem Int Ed, 2008, 47: 8601–8604

    Article  Google Scholar 

  42. Lee J S, Ulmann P A, Han M S, et al. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett, 2008, 8: 529–533

    Article  ADS  Google Scholar 

  43. Ai K L, Liu Y L, Lu L H. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J Am Chem Soc, 2009, 131: 9496–9497

    Article  Google Scholar 

  44. Li F, Zhang J, Cao X N, et al. Adenosine detection by using gold nanoparticles and designed aptamer sequences. Analyst, 2009, 134: 1355–1360

    Article  ADS  Google Scholar 

  45. Jiang Y, Zhao H, Lin Y Q, et al. Colorimetric detection of glucose in rat brain using gold nanoparticles. Angew Chem Int Ed, 2010, 49: 4800–4804

    Google Scholar 

  46. Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed, 2007, 46: 4093–4096

    Article  Google Scholar 

  47. Xue X J, Wang F, Liu X G. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J Am Chem Soc, 2008, 130: 3244–3245

    Article  Google Scholar 

  48. Liu D B, Qu W S, Chen W W, et al. Highly sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Anal Chem, 2010, 82: 9606–9610

    Article  Google Scholar 

  49. Liu J W, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc, 2003, 125: 6642–6643

    Article  Google Scholar 

  50. Liu J W, Lu Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc, 2004, 126: 12298–12305

    Article  Google Scholar 

  51. Zhou Y, Wang S X, Zhang K, et al. Visual detection of copper(II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew Chem Int Ed, 2008, 47: 7454–7456

    Article  Google Scholar 

  52. Xu X Y, Daniel W L, Wei W, et al. Colorimetric Cu2+ detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry. Small, 2010, 6: 623–626

    Article  Google Scholar 

  53. Kim S, Park J W, Kim D, et al. Bioinspired colorimetric detection of calcium(II) ions in serum using calsequestrin-functionalized gold nanoparticles. Angew Chem Int Ed, 2009, 48: 4138–4141

    Article  Google Scholar 

  54. Lee J H, Wang Z D, Liu J W, et al. Highly sensitive and selective colorimetric sensors for uranyl (UO22+): Development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc, 2008, 130: 14217–14226

    Article  Google Scholar 

  55. Daniel W L, Han M S, Lee J S, et al. Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J Am Chem Soc, 2009, 131: 6362–6363

    Article  Google Scholar 

  56. Li H X, Rothberg L J. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA, 2004, 101: 14036–14039

    Article  ADS  Google Scholar 

  57. Li H X, Rothberg L J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc, 2004, 126: 10958–10961

    Article  Google Scholar 

  58. Bloomfield V A, Crothers D M, Tinoco I. Nuclei Acids: Structures, Properties, and Functions. Sausalito: University Science Books, 1999

    Google Scholar 

  59. Hunter R J. Foundations of Colloid Science. Oxford: Oxford University Press, 2001

    Google Scholar 

  60. Qi Y Y, Li L, Li B X. Label-free detection of specific DNA sequence-telomere using unmodified gold nanoparticles as colorimetric probes. Spectrochim Acta Part A, 2009, 74: 127–131

    Article  ADS  Google Scholar 

  61. Jung Y L, Jung C, Parab H, et al. Direct colorimetric diagnosis of pathogen infections by utilizing thiol-labeled PCR primers and unmodified gold nanoparticles. Biosens Bioelectron, 2010, 25: 1941–1946

    Article  Google Scholar 

  62. Kanjanawarut R, Su X D. Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal Chem, 2009, 81: 6122–6129

    Article  Google Scholar 

  63. Wei H, Li B L, Li J, et al. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commn, 2007, 46: 3735–3737

    Article  MathSciNet  Google Scholar 

  64. Lou X H, Xiao Y, Wang Y, et al. Label-free colorimetric screening of nuclease activity and substrates by using unmodified gold nanoparticles. ChemBioChem, 2009, 10: 1973–1977

    Article  Google Scholar 

  65. Shen Q P, Nie Z, Guo M L, et al. Simple and rapid colorimetric sensing of enzymatic cleavage and oxidative damage of single-stranded DNA with unmodified gold nanoparticles as indicator. Chem Commn, 2009, 48: 929–931

    Article  Google Scholar 

  66. Wang Q R, Kim D, Dionysiou D D, et al. Sources and remediation for mercury contamination in aquatic systems-a literature review. Environ Pollut, 2004, 131: 323–336

    Article  Google Scholar 

  67. Li D, Wieckowska A, Willner I. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew Chem Int Ed, 2008, 47: 3927–3931

    Article  Google Scholar 

  68. Liu C W, Hsieh Y T, Huang C C, et al. Detection of mercury(II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chem Commn, 2008, 47: 2242–2244

    Article  Google Scholar 

  69. Katz S. The reversible reaction of sodium thymonucleate and mercuric chloride. J Am Chem Soc, 1952, 74: 2238–2245

    Article  Google Scholar 

  70. Yamane T, Davidson N. Complexing of desoxyribonucleic acid (DNA) by mercuric ion. J Am Chem Soc, 1961, 83: 2599–2607

    Article  Google Scholar 

  71. Wang H, Wang Y X, Jin J Y, et al. Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution. Anal Chem, 2008, 80: 9021–9028

    Article  Google Scholar 

  72. Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett, 2006, 96: 113002

    Article  ADS  Google Scholar 

  73. Li X, Qian J, Jiang L, et al. Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection. Appl Phys Lett, 2009, 94: 063111

    Article  ADS  Google Scholar 

  74. Dubertret B, Calame M, Libchaber A J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol, 2001, 19: 365–370

    Article  Google Scholar 

  75. Schneider G, Decher G, Nerambourg N, et al. Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes. Nano Lett, 2006, 6: 530–536

    Article  ADS  Google Scholar 

  76. Xu X W, Wang J, Jiao K, et al. Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. Biosens Bioelectron, 2009, 24: 3153–3158

    Article  Google Scholar 

  77. Li L, Li B X, Qi Y Y, et al. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal Bioanal Chem, 2009, 393: 2051–2057

    Article  Google Scholar 

  78. Wang Y, Yang F, Yang X R. Colorimetric biosensing of mercury(II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosens Bioelectron, 2010, 25: 1994–1998

    Article  Google Scholar 

  79. Needleman H L. Human Lead Exposure. Boca Raton: CRC Press, 1992

    Google Scholar 

  80. Wang Z D, Lee J H, Lu Y. Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater, 2008, 20: 3263–3267

    Article  Google Scholar 

  81. Wei H, Li B L, Li J, et al. DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes. Nanotechnology, 2008, 19: 095501

    Article  MathSciNet  ADS  Google Scholar 

  82. Santoro S W, Joyce G F. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA, 1997, 94: 4262–4266

    Article  ADS  Google Scholar 

  83. Cook D L, Hales C N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature, 1984, 311: 271–273

    Article  ADS  Google Scholar 

  84. Wang J, Wang L H, Liu X F, et al. A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater, 2007, 19: 3943–3946

    Article  Google Scholar 

  85. Brown C A, Jeong K S, Poppenga R H, et al. Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007. J Vet Diagn Invest, 2007, 19: 525–531

    Article  Google Scholar 

  86. Chi H, Liu B H, Guan G J, et al. A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles. Analyst, 2010, 135: 1070–1075

    Article  ADS  Google Scholar 

  87. Zhang Z P, Sun H P, Shao X Q, et al. Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures. Adv Mater, 2005, 17: 42–47

    Article  Google Scholar 

  88. Wei F, Lam R, Cheng S, et al. Rapid detection of melamine in whole milk mediated by unmodified gold nanoparticles. Appl Phys Lett, 2010, 96: 133702

    Article  ADS  Google Scholar 

  89. Togna G I, Graziani M, Russo P, et al. Cocaine toxic effect on endothelium-dependent vasorelaxation: An in vitro study on rabbit aorta. Toxicol Lett, 2001, 123: 43–50

    Article  Google Scholar 

  90. Zhang J, Wang L H, Pan D, et al. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small, 2008, 4: 1196–1200

    Article  Google Scholar 

  91. Wolfe S A, Nekludova L, Pabo C O. DNA recognition by Cys(2)His(2) zinc finger proteins. Annu Rev Biophys Biomol Struct, 2000, 29: 183–212

    Article  Google Scholar 

  92. Zhang M, Yu M X, Li F Y, et al. A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging. J Am Chem Soc, 2007, 129: 10322–10323

    Article  Google Scholar 

  93. Durocher S, Rezaee A, Hamm C, et al. Disulfide-linked, gold nanoparticle based reagent for detecting small molecular weight thiols. J Am Chem Soc, 2009, 131: 2475–2477

    Article  Google Scholar 

  94. Chen Z, Luo S L, Liu C B, et al. Simple and sensitive colorimetric detection of cysteine based on ssDNA-stabilized gold nanoparticles. Anal Bioanal Chem, 2009, 395: 489–494

    Article  Google Scholar 

  95. Li L, Li B X. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst, 2009, 134: 1361–1365

    Article  ADS  Google Scholar 

  96. Wu Z S, Zhang S B, Guo M M, et al. Homogeneous, unmodified gold nanoparticle-based colorimetric assay of hydrogen peroxide. Anal Chim Acta, 2007, 584: 122–128

    Article  Google Scholar 

  97. Xin A P, Dong Q P, Xiong C, et al. Colorimetric recognition of DNA intercalators with unmodified gold nanoparticles. Chem Commn, 2009, 48: 1658–1660

    Article  Google Scholar 

  98. Wei H, Chen C G, Han B Y, et al. Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem, 2008, 80: 7051–7055

    Article  Google Scholar 

  99. Wang Y, Yang F, Yang X R. Colorimetric detection of mercury(II) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides. ACS Appl Mater Interfaces, 2010, 2: 339–342

    Article  Google Scholar 

  100. Chen Z, He Y J, Luo S L, et al. Label-free colorimetric assay for biological thiols based on ssDNA/silver nanoparticle system by salt amplification. Analyst, 2010, 135: 1066–1069

    Article  ADS  Google Scholar 

  101. Xia F, Zuo X L, Yang R Q, et al. Plaxco KW, colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci USA, 2010, 107: 10837–10841

    Article  ADS  Google Scholar 

  102. Xia F, Zuo X L, Yang R Q, et al. On the binding of cationic, water-soluble conjugated polymers to DNA: Electrostatic and hydrophobic interactions. J Am Chem Soc, 2010, 132: 1252–1253

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to KaiYong Cai or XingYu Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, S., Liu, D., Wang, Z. et al. Utilization of unmodified gold nanoparticles in colorimetric detection. Sci. China Phys. Mech. Astron. 54, 1757 (2011). https://doi.org/10.1007/s11433-011-4486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-011-4486-7

Keywords

Navigation