Skip to main content
Log in

Copper Doping of CdS Nanoflakes and Nanoflowers for Efficient Photocatalytic Degradation of MB and MV Dyes

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Nanoflowers and flakes CdS films were produced on glass substrates using a hydrothermal technique for 2 h at 150 °C utilizing basic ingredients. The films' structural, morphological, optical, and photocatalytic characteristics were investigated at various concentrations of 1%, 2%, 3%, 4%, and 5% Cu-doping. X-Ray diffraction investigations reveal that un-doped and doping films are polycrystalline, having hexagonal and cubic crystal formations. The films have highly preferred orientation along H(002)/C(111). The crystallite size of the deposited samples decreased from 10.7 to 5.2 nm as the Cu-doping concentration increased. The films' atomic force microscope imagery revealed morphological changes and an increase in surface roughness from 4.58 to 18 nm. The field-emission scanning electron microscopy micrographs showed shape development of the nanoflakes in the presence of copper. The transmittance and energy gap were measured and estimated at various doping concentrations. The results demonstrate that increasing the concentration of Cu doping reduced the energy gap from 2.38 to 1.98 eV. The Cu-doped cadmium sulfide films have shown photocatalytic activity for the degradation of methyl blue (MB) and methyl violet (MV) dyes due to their enhanced size, reduced energy gap, and efficient separation of charging characteristics. Also, 5% Cu:CdS sample showed high degradation up to 89% of the MB and 97% of the MV were degraded in 260 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Cho SH, Kim SS, Park MH, Suh JH, Hong JK (2014) Surface treatment of the window layer in CdS/CdTe solar cells. J Korean Phys Soc 65:1590–1593. https://doi.org/10.3938/jkps.65.1590

    Article  CAS  Google Scholar 

  2. Wondmagegn W, Mejia I, Salas-Villasenor A, Stiegler HJ, Quevedo-Lopez MA, Pieper RJ, Gnade BE (2016) CdS thin film transistor for inverter and operational amplifier circuit applications. Microelectron Eng 157:64–70. https://doi.org/10.1016/j.mee.2016.02.042

    Article  CAS  Google Scholar 

  3. Geißler D, Würth C, Wolter C, Weller H, Resch-Genger U (2017) Excitation wavelength dependence of the photoluminescence quantum yield and decay behavior of CdSe/CdS quantum dot/quantum rods with different aspect ratios. Phys Chem Chem Phys 19:12509–12516. https://doi.org/10.1039/c7cp02142a

    Article  CAS  PubMed  Google Scholar 

  4. Yang X, Wang B, Mu Y, Zheng M, Wang Y (2019) Photocatalytic performance of cubic and hexagonal phase CdS synthesized via different Cd sources. J Electron Mater. https://doi.org/10.1007/s11664-019-06967-4

    Article  Google Scholar 

  5. Mukherjee A, Ghosh P, Aboud AA, Mitra P (2016) Influence of copper incorporation in CdS: structural and morphological studies. Mater Chem Phys 184:101–109. https://doi.org/10.1016/j.matchemphys.2016.09.030

    Article  CAS  Google Scholar 

  6. Aboud AA, Mukherjee A, Revaprasadu N, Mohamed AN (2019) The effect of Cu-doping on CdS thin films deposited by the spray pyrolysis technique. J Mater Res Technol 8:2021–2030. https://doi.org/10.1016/j.jmrt.2018.10.017

    Article  CAS  Google Scholar 

  7. Rmili A, Ouachtari F, Bouaoud A, Louardi A, Chtouki T, Elidrissi B, Erguig H (2013) Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis. J Alloys Compd 557:53–59. https://doi.org/10.1016/j.jallcom.2012.12.136

    Article  CAS  Google Scholar 

  8. Acosta DR, Magaña CR, Martínez AI, Maldonado A (2004) Structural evolution and optical characterization of indium doped cadmium sulfide thin films obtained by spray pyrolysis for different substrate temperatures. Sol Energy Mater Sol Cells 82:11–20. https://doi.org/10.1016/j.solmat.2004.01.001

    Article  CAS  Google Scholar 

  9. Patil BN, Naik DB, Shrivastava VS (2011) Synthesis and characterization of Al doped CdS thin films grown by chemical bath deposition method and its application to remove dye by photocatalytic treatment. Chalcogenide Lett 8:117–121

    Google Scholar 

  10. Ghugal SG, Mahalik RR, Charde PS, Umare SS, Kokane SB, Sudarsan V, Sasikala R (2017) Photocatalytic properties of mesoporous alumina containing Ni doped CdS nanostructures. Microporous Mesoporous Mater 242:284–293. https://doi.org/10.1016/j.micromeso.2017.01.027

    Article  CAS  Google Scholar 

  11. Mariappan R, Ponnuswamy V, Ragavendar M, Krishnamoorthi D, Sankar C (2012) The effect of annealing temperature on structural and optical properties of undoped and Cu doped CdS thin films. Optik (Stuttg) 123:1098–1102. https://doi.org/10.1016/j.ijleo.2011.07.038

    Article  CAS  Google Scholar 

  12. Abdolahzadeh Ziabari A, Ghodsi FE (2013) Influence of Cu doping and post-heat treatment on the microstructure, optical properties and photoluminescence features of sol-gel derived nanostructured CdS thin films. J Lumin 141:121–129. https://doi.org/10.1016/j.jlumin.2013.03.029

    Article  CAS  Google Scholar 

  13. Diaz-Grijalva OI, Berman-Mendoza D, Flores-Pacheco A, López-Delgado R, Ramos-Carrazco A, Alvarez-Ramos ME (2020) Cu-doped CdS thin films by chemical bath deposition and ion exchange. J Mater Sci Mater Electron 31:1722–1730. https://doi.org/10.1007/s10854-019-02690-2

    Article  CAS  Google Scholar 

  14. Al-Zuhery AM, Al-Jawad SM, Al-Mousoi AK (2017) The effect of PbS thickness on the performance of CdS/PbS solar cell prepared by CSP. Optik (Stuttg) 130:666–672. https://doi.org/10.1016/j.ijleo.2016.10.120

    Article  CAS  Google Scholar 

  15. Liu G, Schulmeyer T, Brötz J, Klein A, Jaegermann W (2003) Interface properties and band alignment of Cu2S/CdS thin film solar cells. Thin Solid Films 431–432:477–482. https://doi.org/10.1016/S0040-6090(03)00190-1

    Article  CAS  Google Scholar 

  16. AL-Jawad SMH, Ismail MM, Emad S (2017) Characterization of Mn, Cu, and (Mn, Cu) co-doped ZnS nanoparticles. J Opt Technol 84:80–85

    Article  Google Scholar 

  17. Kumar N, Pathak TK, Purohit LP, Swart HC, Goswami YC (2018) Self-assembled Cu doped CdS nanostructures on flexible cellulose acetate substrates using low cost sol–gel route. Nano-Structures and Nano-Objects 16:1–8. https://doi.org/10.1016/j.nanoso.2018.03.001

    Article  CAS  Google Scholar 

  18. Cortes A, Gómez H, Marotti RE, Riveros G, Dalchiele EA (2004) Grain size dependence of the bandgap in chemical bath deposited CdS thin films. Sol Energy Mater Sol Cells 82:21–34. https://doi.org/10.1016/j.solmat.2004.01.002

    Article  CAS  Google Scholar 

  19. Kumar V, Kumar K, Jeon HC, Kang TW, Lee D, Kumar S (2019) Effect of Cu-doping on the photoluminescence and photoconductivity of template synthesized CdS nanowires. J Phys Chem Solids 124:1–6. https://doi.org/10.1016/j.jpcs.2018.08.031

    Article  CAS  Google Scholar 

  20. Cheng L, Xiang Q, Liao Y, Zhang H (2018) CdS-Based photocatalysts. Energy Environ Sci 11:1362–1391. https://doi.org/10.1039/c7ee03640j

    Article  CAS  Google Scholar 

  21. Judran HK, Yousif NA, AL-Jawad SMH (2021) Preparation and characterization of CdS prepared by hydrothermal method. J Sol-Gel Sci Technol 97:48–62. https://doi.org/10.1007/s10971-020-05430-9

    Article  CAS  Google Scholar 

  22. Singh A, Ahmed A, Sharma A, Sharma C, Paul S, Khosla A, Gupta V, Arya S (2021) Promising photocatalytic degradation of methyl orange dye via sol-gel synthesized Ag–CdS@Pr-TiO2 core/shell nanoparticles. Phys B Condens Matter 616:413121. https://doi.org/10.1016/j.physb.2021.413121

    Article  CAS  Google Scholar 

  23. Abid MA, Kadhim DA (2020) Novel comparison of iron oxide nanoparticle preparation by mixing iron chloride with henna leaf extract with and without applied pulsed laser ablation for methylene blue degradation. J Environ Chem Eng 8:104138. https://doi.org/10.1016/j.jece.2020.104138

    Article  CAS  Google Scholar 

  24. Chandramohan S, Kanjilal A, Tripathi JK, Sarangi SN, Sathyamoorthy R, Som T (2009) Structural and optical properties of Mn-doped CdS thin films prepared by ion implantation. J Appl Phys 105. https://doi.org/10.1063/1.3151712

  25. Chandramohan S, Kanjilal A, Sarangi SN, Majumder S, Sathyamoorthy R, Som T (2010) Effect of Fe-ion implantation doping on structural and optical properties of CdS thin films. Appl Phys A Mater Sci Process 99:837–842. https://doi.org/10.1007/s00339-010-5598-z

    Article  CAS  Google Scholar 

  26. Kanwate AD, Kathwate LH, Panse VR, Saregar A, Choubey SR (2023) Effect of thickness on structural, morphological and optical properties of spray deposited CdSe0.3Te0.7 thin films. J Mater Sci Mater Electron 34:13–15. https://doi.org/10.1007/s10854-023-11578-1

    Article  CAS  Google Scholar 

  27. Muthusamy M, Muthukumaran S (2015) Effect of Cu-doping on structural, optical and photoluminescence properties of CdS thin films. Optik (Stuttg) 126:5200–5206. https://doi.org/10.1016/j.ijleo.2015.09.186

    Article  CAS  Google Scholar 

  28. Al-Jawad SMH, Mohammad MR, Imran NJ (2018) Effect of electrolyte solution on structural and optical properties of TiO2 grown by anodization technique for photoelectrocatalytic application. Surf Rev Lett 25(5):1850078. https://doi.org/10.1142/S0218625X18500786

    Article  CAS  Google Scholar 

  29. Hussein ON, Al SMH, Natheer J (2023) Structural, morphological, optical, and antibacterial properties of Mn and (Ag, Mn) co-doped copper sulfide nanostructures. Opt Quant Electron 55:503–526

    Article  CAS  Google Scholar 

  30. Aboud KH, AL-Jawad SMH, Imran NJ (2023) Synthesis and characterization of flakes-like and flowers-like Ni: CdS nano films via hydrothermal technique for photocatalytic activity. J Mater Sci Mater Electron 34. https://doi.org/10.1007/s10854-023-10330-z

  31. Taha AA, Al-Jawad SMH, Redha AM (2019) Preparation and characterization of nanostructure CuS for biological activity. Mod Phys Lett B 33:1–17. https://doi.org/10.1142/S0217984919503743

    Article  CAS  Google Scholar 

  32. Aboud KH, AL-Jawad SMH, Imran NJ (2022) Preparation and characterization of hierarchical CdS nanoflowers for efficient photocatalytic degradation. J Nanostruct 12:316–329. https://doi.org/10.22052/JNS.2022.02.009

    Article  CAS  Google Scholar 

  33. Irfan H, Mohamed Racik K, Anand S (2018) Microstructural evaluation of CoAl2O4 nanoparticles by Williamson-Hall and size–strain plot methods. J Asian Ceram Soc 6:54–62. https://doi.org/10.1080/21870764.2018.1439606

    Article  Google Scholar 

  34. Shende DA, Rane YN, Raghuwanshi MG, Gosavi NM, Gosavi SR, Deshpande NG (2018) Visible-light-driven photocatalytic activity of mixed phase CdS-flakes. Optik (Stuttg) 161:284–292. https://doi.org/10.1016/j.ijleo.2018.02.052

    Article  CAS  Google Scholar 

  35. AL-Jawad SMH, Imran NJ, Aboud KH (2021) Synthesis and characterization of Mn:CdS nanoflower thin films prepared by hydrothermal method for photocatalytic activity. J Sol-Gel Sci Technol 100:423–439. https://doi.org/10.1007/s10971-021-05656-1

    Article  CAS  Google Scholar 

  36. Taha AA, AL-Jawad SMH, Salim MM, (2018) Influence of titanium tetraisopropoxide concentration on the antibacterial activity of TiO2 thin films. Surf Rev Lett 25(6):1850111. https://doi.org/10.1142/S0218625X18501111

    Article  CAS  Google Scholar 

  37. Najm AS, Naeem HS, Alabboodi KO, Hasbullah SA, Hasan HA, Holi AM, AL-Zahrani AA, Sopian K, Bais B, Majdi HS, Sultan AJ (2022) New systematic study approach of green synthesis CdS thin film via Salvia dye. Sci Rep 12:1–21. https://doi.org/10.1038/s41598-022-16733-y

    Article  CAS  Google Scholar 

  38. Al-Jawad SMH, Imran NJ, Mohammad MR (2020) Effect of electrolyte solution and deposition methods on TiO2/CdS core-shell nanotube arrays for photoelectrocatalytic application. Eur Phys J Appl Phys 92:20102. https://doi.org/10.1051/epjap/2020200127

    Article  CAS  Google Scholar 

  39. AL-Jawad SMH, Taha AA, Mohammed Redha A, Jamal Imran N, (2021) Influence of nickel Doping concentration on the characteristics of nanostructure CuS prepared by hydrothermal method for antibacterial activity. Surf Rev Lett 28(1):2050031. https://doi.org/10.1142/S0218625X20500316

    Article  Google Scholar 

  40. Mullamuri B, Sai Sriram Mosali V, Maseed H, Majety SS, Chandu B (2021) Photocatalytic activity of heavy metal doped Cds nanoparticles synthesized by using ocimum sanctum leaf extract. Biointerface Res Appl Chem 11:12547–12559. https://doi.org/10.33263/BRIAC115.1254712559

    Article  CAS  Google Scholar 

  41. Velanganni S, Pravinraj S, Immanuel P, Thiruneelakandan R (2018) Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue. Phys B Condens Matter 534:56–62. https://doi.org/10.1016/j.physb.2018.01.027

    Article  CAS  Google Scholar 

  42. Shaban M, Mustafa M, El Sayed AM (2016) Structural, optical, and photocatalytic properties of the spray deposited nanoporous CdS thin films; influence of copper doping, annealing, and deposition parameters. Mater Sci Semicond Process 56:329–343. https://doi.org/10.1016/j.mssp.2016.09.006

    Article  CAS  Google Scholar 

  43. Ganesh RS, Durgadevi E, Navaneethan M, Sharma SK, Binitha HS, Ponnusamy S, Muthamizhchelvan C, Hayakawa Y (2017) Visible light induced photocatalytic degradation of methylene blue and rhodamine B from the catalyst of CdS nanowire. Chem Phys Lett 684:126–134. https://doi.org/10.1016/j.cplett.2017.06.021

    Article  CAS  Google Scholar 

  44. Mali SS, Desai SK, Dalavi DS, Betty CA, Bhosale PN, Patil PS (2011) CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application. Photochem Photobiol Sci 10:1652–1658. https://doi.org/10.1039/c1pp05084b

    Article  CAS  PubMed  Google Scholar 

  45. Wu J, Li Z, Li F (2013) Synthesis and visible-light-driven photocatalytic activity of one-dimensional CdS/α-Fe2O3. Superlattices Microstruct 54:146–154. https://doi.org/10.1016/j.spmi.2012.11.008

    Article  CAS  Google Scholar 

  46. Luo M, Liu Y, Hu J, Liu H, Li J (2012) One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability. ACS Appl Mater Interfaces 4:1813–1821. https://doi.org/10.1021/am3000903

    Article  CAS  PubMed  Google Scholar 

  47. Zhang J, Zhang Z, Zhu W, Meng X (2020) Boosted photocatalytic degradation of Rhodamine B pollutants with Z-scheme CdS/AgBr-rGO nanocomposite. Appl Surf Sci 502:144275. https://doi.org/10.1016/j.apsusc.2019.144275

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the University of Technology and the School of Applied Sciences in Baghdad, Iraq, for conducting this study.‬

Author information

Authors and Affiliations

Authors

Contributions

Selma M. H. AL-Jawad contributed to investigation, methodology, and formal analysis. Kahlaa H. Aboud contributed to writing—review and editing. Natheer Jamal Imran contributed to writing formal analysis, and investigation. And Sally Yakoob Taher contributed to administration, formal analysis, and investigation.

Corresponding author

Correspondence to Selma M. H. Al-Jawad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Jawad, S.M.H., Aboud, K.H., Imran, N.J. et al. Copper Doping of CdS Nanoflakes and Nanoflowers for Efficient Photocatalytic Degradation of MB and MV Dyes. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02316-2

Keywords

Navigation