Skip to main content
Log in

Enhancing Visible Light-Driven Photocatalysis for Water Treatment: Optimizing Fe3O4@SiO2@Cr–TiO2–S Nanocomposite Efficiency with Silver and Palladium Deposition

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, we developed a magnetically separable, visible light-responsive photocatalyst, Fe3O4@SiO2@Cr–TiO2–S, optimized via response surface methodology (RSM) for enhanced photodegradation of methyl orange in water. By doping with chromium and sulfur, and further surface modification with silver and palladium nanoparticles, we achieved significant improvement in photocatalytic efficiency under visible light. Our findings reveal that the optimal doping levels of Cr/TiO2 at 2.88 mol% and S/TiO2 at 3.02 mol%, coupled with noble metal deposition, notably enhance the degradation rates, leveraging the surface plasmon resonance effects of Ag nanoparticles for better light absorption and charge separation. This study presents a novel approach to synthesizing efficient photocatalysts for water treatment applications, highlighting the potential of magnetic nanocomposites in environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Yong Z-J, Lam S-M, Sin J-C, Zeng H, Mohamed AR, Jaffari ZH (2022) Boosting sunlight-powered photocatalytic fuel cell with S-scheme Bi2WO6/ZnO nanorod array composite photoanode. Inorg Chem Commun 143:109826. https://doi.org/10.1016/j.inoche.2022.109826

    Article  CAS  Google Scholar 

  2. Wang F, Sun Y-Y, Hatch JB, Xing H, Zhu X, Zhang H, Xu X, Luo H, Perera S, Zhang S (2015) Realizing chemical codoping in TiO2. Phys Chem Chem Phys 17:17989–17994

    Article  CAS  PubMed  Google Scholar 

  3. Li W, Deng Y, Wu Z, Qian X, Yang J, Wang Y, Gu D, Zhang F, Tu B, Zhao D (2011) Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J Am Chem Soc 133:15830–15833

    Article  CAS  PubMed  Google Scholar 

  4. Sivalingam G, Nagaveni K, Hegde M, Madras G (2003) Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2. Appl Catal B 45:23–38

    Article  CAS  Google Scholar 

  5. Hung W-C, Fu S-H, Tseng J-J, Chu H, Ko T-H (2007) Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol–gel method. Chemosphere 66:2142–2151

    Article  CAS  PubMed  Google Scholar 

  6. Khojasteh H, Salavati-Niasari M, Mazhari M-P, Hamadanian M (2016) Preparation and characterization of Fe3O4@SiO2@TiO2@Pd and Fe3O4@SiO2@TiO2@Pd–Ag nanocomposites and their utilization in enhanced degradation systems and rapid magnetic separation. RSC Adv 6:78043–78052

    Article  CAS  Google Scholar 

  7. Pathak V, Lad P, Thakkar AB, Thakor P, Deshpande MP, Pandya S (2024) CeO2-ZnO nano composites: dual-functionality for enhanced photocatalysis and biomedical applications. Inorg Chem Commun 159:111738. https://doi.org/10.1016/j.inoche.2023.111738

    Article  CAS  Google Scholar 

  8. Kurtoglu ME, Longenbach T, Sohlberg K, Gogotsi Y (2011) Strong coupling of Cr and N in Cr–N-doped TiO2 and its effect on photocatalytic activity. J Phys Chem C 115:17392–17399

    Article  CAS  Google Scholar 

  9. Lanjwani MF, Tuzen M, Khuhawar MY, Saleh TA (2024) Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: a review. Inorg Chem Commun 159:111613. https://doi.org/10.1016/j.inoche.2023.111613

    Article  CAS  Google Scholar 

  10. Jiang D, Xu Y, Hou B, Wu D, Sun Y (2007) Synthesis of visible light-activated TiO2 photocatalyst via surface organic modification. J Solid State Chem 180:1787–1791

    Article  CAS  Google Scholar 

  11. Hamadanian M, Reisi-Vanani A, Razi P, Hoseinifard S, Jabbari V (2013) Photodeposition-assisted synthesis of novel nanoparticulate In, S-codoped TiO2 powders with high visible light-driven photocatalytic activity. Appl Surf Sci 285:121–129

    Article  CAS  Google Scholar 

  12. Zhang T, Zhang X, Ng J, Yang H, Liu J, Sun DD (2011) Fabrication of magnetic cryptomelane-type manganese oxide nanowires for water treatment. Chem Commun 47:1890–1892

    Article  CAS  Google Scholar 

  13. Kader DA (2023) Green approach for the fabrication of a ternary nanocatalyst (Ag-ZnONPs@Cy) for visible light-induced photocatalytic reduction of nitroarenes to aminoarenes. RSC Adv 13:34904–34915. https://doi.org/10.1039/D3RA06448D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kader DA, Rashid SO, Mohammed SJ (2023) Innovative development of hybrid nanocatalyst (ATH-ZnONPs) through green methods for achieving visible light-induced photocatalytic aerobic oxidation of benzyl alcohols into corresponding aldehydes and ketones. Surfaces and Interfaces 43:103599. https://doi.org/10.1016/j.surfin.2023.103599

    Article  CAS  Google Scholar 

  15. Hamadanian M, Reisi-Vanani A, Majedi A (2010) Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu, S-codoped TiO2 nanoparticles. Appl Surf Sci 256:1837–1844

    Article  CAS  Google Scholar 

  16. Lenzi G, Fávero C, Colpini L, Bernabe H, Baesso M, Specchia S, Santos O (2011) Photocatalytic reduction of Hg (II) on TiO2 and Ag/TiO2 prepared by the sol–gel and impregnation methods. Desalination 270:241–247

    Article  CAS  Google Scholar 

  17. Yamashita H, Harada M, Misaka J, Takeuchi M, Ikeue K, Anpo M (2002) Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J Photochem Photobiol, A 148:257–261

    Article  CAS  Google Scholar 

  18. Li D, Jia J, Zheng T, Cheng X, Yu X (2016) Construction and characterization of visible light active Pd nano-crystallite decorated and CNS-co-doped TiO2 nanosheet array photoelectrode for enhanced photocatalytic degradation of acetylsalicylic acid. Appl Catal B 188:259–271

    Article  CAS  Google Scholar 

  19. Herrmann J-M, Disdier J, Pichat P (1984) Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination. Chem Phys Lett 108:618–622

    Article  CAS  Google Scholar 

  20. Kato H, Kudo A (2002) Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem B 106:5029–5034

    Article  CAS  Google Scholar 

  21. Anpo M, Kishiguchi S, Ichihashi Y, Takeuchi M, Yamashita H, Ikeue K, Morin B, Davidson A, Che M (2001) The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method. Res Chem Intermed 27:459–467

    Article  CAS  Google Scholar 

  22. Wang X-K, Wang C, Zhang D (2012) Sonochemical synthesis and characterization of Cl–N-codoped TiO2 nanocrystallites. Mater Lett 72:12–14

    Article  Google Scholar 

  23. Wang F, Ma Z, Ban P, Xu X (2017) C, N and S codoped rutile TiO2 nanorods for enhanced visible-light photocatalytic activity. Mater Lett 195:143–146

    Article  CAS  Google Scholar 

  24. Yang X, Cao C, Hohn K, Erickson L, Maghirang R, Hamal D, Klabunde K (2007) Highly visible-light active C-and V-doped TiO2 for degradation of acetaldehyde. J Catal 252:296–302

    Article  CAS  Google Scholar 

  25. Alemu MA, Worku AK, Getie MZ (2024) Recent advances in electrically rechargeable transition metal-based-air batteries for electric mobility. Inorg Chem Commun 159:111742. https://doi.org/10.1016/j.inoche.2023.111742

    Article  CAS  Google Scholar 

  26. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Sci 293:269–271

    Article  CAS  Google Scholar 

  27. Pan C-C, Wu JC (2006) Visible-light response Cr-doped TiO2− X N X photocatalysts. Mater Chem Phys 100:102–107

    Article  CAS  Google Scholar 

  28. Su Y, Zhang X, Zhou M, Han S, Lei L (2008) Preparation of high efficient photoelectrode of N-F-codoped TiO 2 nanotubes. J Photochem Photobiol, A 194:152–160

    Article  CAS  Google Scholar 

  29. Esfandian H, Rostamnejad Cherati M, Khatirian M (2024) Electrochemical behavior and photocatalytic performance of chlorpyrifos pesticide decontamination using Ni-doped ZnO-TiO2 nanocomposite. Inorg Chem Commun 159:111750. https://doi.org/10.1016/j.inoche.2023.111750

    Article  CAS  Google Scholar 

  30. Suresh T, Gopinath S, Vinoth E, Vetrivel S (2024) Investigation on synthesis, optical and electrical performance of L-asparagine cerium(III) sulfate single crystal for non linear optical applications. Inorg Chem Commun 159:111603. https://doi.org/10.1016/j.inoche.2023.111603

    Article  CAS  Google Scholar 

  31. Wu S-H, Wu J-L, Jia S-Y, Chang Q-W, Ren H-T, Liu Y (2013) Cobalt (II) phthalocyanine-sensitized hollow Fe3O4@SiO2@TiO2 hierarchical nanostructures: fabrication and enhanced photocatalytic properties. Appl Surf Sci 287:389–396

    Article  CAS  Google Scholar 

  32. Cano M, Sbargoud K, Allard E, Larpent C (2012) Magnetic separation of fatty acids with iron oxide nanoparticles and application to extractive deacidification of vegetable oils. Green Chem 14:1786–1795

    Article  CAS  Google Scholar 

  33. Jaffari ZH, Abbas A, Lam S-M, Park S, Chon K, Kim E-S, Cho KH (2023) Machine learning approaches to predict the photocatalytic performance of bismuth ferrite-based materials in the removal of malachite green. J Hazard Mater 442:130031. https://doi.org/10.1016/j.jhazmat.2022.130031

    Article  CAS  PubMed  Google Scholar 

  34. Hamad H, El-Latif MA, Kashyout AE-H, Sadik W, Feteha M (2015) Synthesis and characterization of core–shell–shell magnetic (CoFe2O4–SiO2–TiO2) nanocomposites and TiO2 nanoparticles for the evaluation of photocatalytic activity under UV and visible irradiation. New J Chem 39:3116–3128

    Article  CAS  Google Scholar 

  35. Gupta VK, Eren T, Atar N, Yola ML, Parlak C, Karimi-Maleh H (2015) CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J Mol Liq 208:122–129

    Article  Google Scholar 

  36. Zhao H, Dong Y, Jiang P, Wang G, Zhang J, Li K (2014) An insight into the kinetics and interface sensitivity for catalytic ozonation: the case of nano-sized NiFe2O4. Catal Sci Technol 4:494–501

    Article  CAS  Google Scholar 

  37. Abbas N, Shao GN, Imran SM, Haider MS, Kim HT (2016) Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: magnetic recovery and reuse. Front Chem Sci Eng 10:405–416

    Article  CAS  Google Scholar 

  38. Chang Chien S-W, Ng D-Q, Kumar D, Lam S-M, Jaffari ZH (2022) Investigating the effects of various synthesis routes on morphological, optical, photoelectrochemical and photocatalytic properties of single-phase perovskite BiFeO3. J Phys Chem Solids 160:110342. https://doi.org/10.1016/j.jpcs.2021.110342

    Article  CAS  Google Scholar 

  39. Joel C, Ivan Jebakumar DS, Biju Bennie R, Vimala Vanthana Abi S, Kadir Sukriya Begam P (2024) Insights into the visible light induced photocatalytic degradation of Acid Violet dye using carbon functionalized Ag2WO4 nanoparticles. Inorg Chem Commun 159:111732. https://doi.org/10.1016/j.inoche.2023.111732

    Article  CAS  Google Scholar 

  40. Chi Y, Yuan Q, Li Y, Zhao L, Li N, Li X, Yan W (2013) Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. J Hazard Mater 262:404–411

    Article  CAS  PubMed  Google Scholar 

  41. He X, Cai Y, Zhang H, Liang C (2011) Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. J Mater Chem 21:475–480

    Article  CAS  Google Scholar 

  42. Jaffari ZH, Lam S-M, Sin J-C, Zeng H, Mohamed AR (2020) Magnetically recoverable Pd-loaded BiFeO3 microcomposite with enhanced visible light photocatalytic performance for pollutant, bacterial and fungal elimination. Sep Purif Technol 236:116195. https://doi.org/10.1016/j.seppur.2019.116195

    Article  CAS  Google Scholar 

  43. Jaffari ZH, Lam SM, Sin JC, Mohamed AR (2019) Constructing magnetic Pt-loaded BiFeO3 nanocomposite for boosted visible light photocatalytic and antibacterial activities. Environ Sci Pollut Res 26:10204–10218. https://doi.org/10.1007/s11356-019-04503-9

    Article  CAS  Google Scholar 

  44. Lundstedt T, Seifert E, Abramo L, Thelin B, Nyström Å, Pettersen J, Bergman R (1998) Experimental design and optimization. Chemom Intell Lab Syst 42:3–40. https://doi.org/10.1016/S0169-7439(98)00065-3

    Article  CAS  Google Scholar 

  45. Jiang W, Joens JA, Dionysiou DD, O’Shea KE (2013) Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate. J Photochem Photobiol, A 262:7–13. https://doi.org/10.1016/j.jphotochem.2013.04.008

    Article  CAS  Google Scholar 

  46. Vildozo D, Ferronato C, Sleiman M, Chovelon J-M (2010) Photocatalytic treatment of indoor air: optimization of 2-propanol removal using a response surface methodology (RSM). Appl Catal B 94:303–310. https://doi.org/10.1016/j.apcatb.2009.11.020

    Article  CAS  Google Scholar 

  47. Chopade AS, Walekar LS, Kolhe ND, Kadam AN, Parbat HA, Patil V, Misra M, Mhamane DS, Mali MG (2024) Hard acid soft base (HSAB) guided morphology engineered copper oxides for efficient photocatalytic degradation of textile effluent under visible light. Inorg Chem Commun 159:111696. https://doi.org/10.1016/j.inoche.2023.111696

    Article  CAS  Google Scholar 

  48. Rezaei-Vahidian H, Zarei AR, Soleymani AR (2017) Degradation of nitro-aromatic explosives using recyclable magnetic photocatalyst: catalyst synthesis and process optimization. J Hazard Mater 325:310–318

    Article  CAS  PubMed  Google Scholar 

  49. Benyounis K, Olabi A, Hashmi M (2005) Effect of laser welding parameters on the heat input and weld-bead profile. J Mater Process Technol 164:978–985

    Article  Google Scholar 

  50. Lak MG, Sabour MR, Amiri A, Rabbani O (2012) Application of quadratic regression model for Fenton treatment of municipal landfill leachate. Waste Manage 32:1895–1902

    Article  Google Scholar 

  51. Hamadanian M, Reisi-Vanani A, Behpour M, Esmaeily A (2011) Synthesis and characterization of Fe, S-codoped TiO2 nanoparticles: application in degradation of organic water pollutants. Desalination 281:319–324

    Article  CAS  Google Scholar 

  52. Diaz-Uribe C, Duran F, Vallejo W, Puello E, Zarate X, Schott E (2023) Photocatalytic study of TiO2 thin films modified with Anderson-type polyoxometalates (Cr, Co and Ni): Experimental and DFT study. Polyhedron 231:116253. https://doi.org/10.1016/j.poly.2022.116253

  53. Santhoshkumar J, Rajeshkumar S, Shanmugam VK (2020) Characterization of bacteria-mediated metal nanoparticles and their biological applications. CRC Press, Microbial Nanotechnology, pp 195–218

    Google Scholar 

  54. Mazhari M-P, Khojasteh H, Sharifi N, Aspoukeh P, Mousavi SM (2024) Development and application of multifunctional Fe3O4/SiO2/TiO2/Cu nanocomposites for sustainable water treatment. JSST 1–13. https://doi.org/10.1007/s10971-024-06353-5

  55. Kumar A, Kashyap MK, Kumar S, Kumar P, Asokan K (2020) Effect of dilute co-doping of Ni and Cr on physical properties of TiO2 nanoparticles. Vacuum 181:109658

    Article  CAS  Google Scholar 

  56. Abbasi A, Ahmadi Golsefidi M (2018) Grafting of silver particles on FeTiO3/TiO2/Ag: synthesis and characterization of FeTiO3/TiO2 nanoparticles in presence of CTAB and their application as photocatalyst. J Mater Sci: Mater Electron 29. https://doi.org/10.1007/s10854-018-9122-0

  57. Marsooli MA (2020) Preparation of Fe3O4/SiO2/TiO2/CeVO4 nanocomposites: investigation of photocatalytic effects on organic pollutants, bacterial environments, and new potential therapeutic candidate against cancer cells. Front Pharmacol 11:488564

    Article  Google Scholar 

  58. Vinayagam R, Pai S, Murugesan G, Varadavenkatesan T, Selvaraj R (2023) Synthesis of photocatalytic zinc oxide nanoflowers using Peltophorum pterocarpum pod extract and their characterization. Appl Nanosci 13:847–857. https://doi.org/10.1007/s13204-021-01919-z

    Article  CAS  Google Scholar 

  59. Sridevi H, Bhat MR, Kumar PS, Kumar NM, Selvaraj R (2023) Structural characterization of cuboidal α-Fe2O3 nanoparticles synthesized by a facile approach. Appl Nanosci 13:5605–5613. https://doi.org/10.1007/s13204-023-02780-y

    Article  CAS  Google Scholar 

  60. Abbasi A, Khojasteh H, Keihan AH, Adib K, Sobhani-Nasab A, Rahimi-Nasrabadi M (2021) Co-precipitation synthesis of Ag-doped NiCr2O4 nanoparticles: investigation of structural, optical, magnetic, and photocatalytic properties. J Mater Sci: Mater Electron 32:1413–1426

    CAS  Google Scholar 

  61. Ngo AB, Nguyen HL, Hollmann D (2018) Criticial assessment of the photocatalytic reduction of Cr(VI) over Au/TiO2. Catalysts 8:606

    Article  Google Scholar 

  62. Liu Z, Lv Y, Wang Y, Wang S, Odebiyi OS, Liu B, Zhang Y, Du H (2022) Oxidative leaching of V-Cr–bearing reducing slag via a Cr(III) induced Fenton-like reaction in concentrated alkaline solutions. J Hazard Mater 439:129495. https://doi.org/10.1016/j.jhazmat.2022.129495

    Article  CAS  PubMed  Google Scholar 

  63. Lam S-M, Jaffari ZH, Sin J-C, Zeng H, Lin H, Li H, Mohamed AR, Ng D-Q (2021) Surface decorated coral-like magnetic BiFeO3 with Au nanoparticles for effective sunlight photodegradation of 2,4-D and E. coli inactivation. J Mol Liq 326:115372. https://doi.org/10.1016/j.molliq.2021.115372

    Article  CAS  Google Scholar 

  64. Lam S-M, Jaffari ZH, Sin J-C, Zeng H, Lin H, Li H, Mohamed AR (2021) Insight into the influence of noble metal decorated on BiFeO3 for 2,4-dichlorophenol and real herbicide wastewater treatment under visible light. Colloids Surf, A 614:126138. https://doi.org/10.1016/j.colsurfa.2021.126138

    Article  CAS  Google Scholar 

  65. Hasanpour M, Motahari S, Jing D, Hatami M (2021) Statistical analysis and optimization of photodegradation efficiency of methyl orange from aqueous solution using cellulose/zinc oxide hybrid aerogel by response surface methodology (RSM). Arab J Chem 14:103401. https://doi.org/10.1016/j.arabjc.2021.103401

    Article  CAS  Google Scholar 

  66. Mirmasoomi SR, Ghazi MM, Galedari M (2017) Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic-assisted impregnation method. Sep Purif Technol 175:418–427

    Article  CAS  Google Scholar 

  67. Subramonian W, Wu TY, Chai S-P (2017) Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2O3-TiO2: treatment efficiency and characterizations of reused photocatalyst. J Environ Manage 187:298–310

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to the Scientific Research Center of Soran University for their support and assistance throughout the course of this research project. Their commitment to promoting scientific research and fostering an environment of academic excellence has been instrumental in the successful completion of this study. We extend our appreciation to the staff and faculty members of the Scientific Research Center for their valuable guidance, technical expertise, and access to research facilities.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Hossein Khojasteh and Vahid Eskandari contributed to the conceptualization of the study, formulation of the research design, and oversight of the entire research project. Nowjuan Sharifi and Kamran Heydaryan played a key role in the synthesis and characterization of nanoparticles. Peyman Aspoukeh contributed significantly to the experimental work, data collection, and analysis, Behrouz Khezri, Samir Hamad Mustafa and Salah Khanahmadzadeh were involved in the application phase of the study, specifically in the degradation of methyl orange (MO) dye. All authors actively participated in the drafting and critical review of the manuscript. Hossein Khojasteh and Peyman Aspoukeh were particularly involved in the writing of the original draft, while Nowjuan Sharifi, Kamran Heydaryan, Behrouz Khezri and Salah Khanahmadzadeh contributed to the manuscript's review and editing process. The final version of the manuscript was approved by all authors.

Corresponding author

Correspondence to Hossein Khojasteh.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khojasteh, H., Khezri, B., Heydaryan, K. et al. Enhancing Visible Light-Driven Photocatalysis for Water Treatment: Optimizing Fe3O4@SiO2@Cr–TiO2–S Nanocomposite Efficiency with Silver and Palladium Deposition. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02315-3

Keywords

Navigation