Skip to main content
Log in

Fabrication of Gold Thin Films on Cooled Glass Substrates

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this article, gold (Au) thin films were fabricated on glass substrates under vacuum conditions (4.5 × 10−6 Torr) within a temperature range of 100–300 K, incrementing in steps of 50 K. Analyses through Field Emission Scanning Electron Microscopy (FESEM) revealed that at a substrate temperature of 230 K, the films featured spherical clusters of uniform size, e.g., 11–12 nm, suggesting that the soliton growth mechanism predominates at this temperature. Atomic Force Microscopy (AFM) further demonstrated that the average surface roughness (Ra) of the Au films varied with the substrate temperature, ranging from 1.2 to 4.7 nm, with the smoothest film observed at 230 K. X-ray diffraction (XRD) analysis confirmed that all films exhibited a cubic crystal structure oriented in the (111) plane. Optical analyses indicated that the films produced across the entire substrate temperature spectrum showed surface plasmon excitation within the 520–600 nm wavelength range. To excite surface plasmons at longer wavelengths, the Au film fabricated at 230 K was annealed at 773 K under vacuum conditions for an hour, enlarging the grain size to ~ 15 nm. Post-annealing, optical measurements revealed a 70-nm shift in the peak position of the plasmonic resonance to a longer wavelength of 650 nm, showcasing the tunable nature of the plasmonic effects through thermal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Kusnezh V, Il’chuk H, Kluczyk K, Gwóźdź K, Petrus R, Tsyupko F, Bieganski P, Płaczek-Popko E (2018) Fabrication and photosensitivity of structures based on CdS: Au nanoparticles nanocomposite. J Alloy Compd 746:471–476

    Article  CAS  Google Scholar 

  2. Shokeen P, Jain A, Kapoor A (2017) Plasmonic ZnO/p-silicon heterojunction solar cell. Opt Mater 67:32–37

    Article  CAS  Google Scholar 

  3. Rodgersi O (2018) Metal (Ag) nanoparticles on thin film CdS/CdTe solar cells. Locus: Seton Hall J Undergrad Res 1:1–10

    Google Scholar 

  4. Kim S, Suh J, Kim T, Hong J, Cho S (2019) Plasmon-enhanced performance of CdS/CdTe solar cells using Au nanoparticles. Opt Express 27:22017–22024

    Article  CAS  PubMed  Google Scholar 

  5. Spalatu N, Hiie J, Maticiuc N, Krunks M, Katerski A, Mikli V, Sildos I (2015) Plasmonic effect of spray-deposited Au nanoparticles on theperformance of CSS CdS/CdTe solar cells. Appl Surf Sci 350:69–73

    Article  CAS  Google Scholar 

  6. Tan H, Santbergen R, Yang G, Smets AHM, Zeman M (2013) Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells. IEEE J Photovolt 3:1–6

    Article  CAS  Google Scholar 

  7. Gür E, Baltakesmez A, Tüzemen S, Yenısoy A (2015) Improved growth quality of the ZnO thin films on Au nano-particles/p-Si. In: IEEE Regional Symposium on Micro and Nanoelectronics (RSM), Kuala-Terengganu, Malaysia, pp 321–324. https://doi.org/10.1109/RSM.2015.7355031

  8. Nevruzoglu V, Altuntaş DB, Tomakin M (2020) Cold substrate method to prepare plasmonic Ag nanoparticle: deposition, characterization, application in solar cell. Appl Phys 126:255

    Article  CAS  Google Scholar 

  9. Koval V, Yakymenko Y, Ivashchuk A, Dusheyko M, Fadieiev M, Didichenko D, Borodinova T (2018) Application of Au Nanoparticles for Silicon Heterojunction Solar Cells. In: 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, pp 186–190. https://doi.org/10.1109/ELNANO.2018.8477552

  10. Matheu P, Lim SH, Derkacs D, McPheeters C, Yub ET (2008) Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl Phys Lett 93:113108

    Article  Google Scholar 

  11. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:1–8

    Article  Google Scholar 

  12. Sangnoa R, Maityb S, Mehtac RK (2016) Plasmonic effect due to silver nanoparticles on silicon solar cell. Procedia Comput Sci 92:549–553

    Article  Google Scholar 

  13. Wang T, Zou S, Zhu J, Lu Z, Sun H, Ye X, Fang L, Tang R, Su X (2019) Enhancing power conversion efficiency of multicrystalline silicon solar cells by plasmonic effect of Ag nanoparticles embedded in SiNx layer. AIP Adv 9:025218

    Article  Google Scholar 

  14. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228

    Article  PubMed  Google Scholar 

  15. Manir M, Nevruzoglu V, Tomakin M (2021) The investigation of stability of n-CdS/p-Cu2S solar cells prepared by cold substrate method. Semicond Sci Tech 36:1–9

    Article  Google Scholar 

  16. Würfel P, Würfel U (2016) Physics of solar cells: from basic principles to advanced concepts, 3rd edn. John Wiley & Sons. ISBN: 978-3-527-41312-6

  17. George J (1992) Preparation of Thin Films. CRC Press

    Google Scholar 

  18. Iacomi F, Purica M, Budianu E, Prepelita P, Macovei D (2007) Structural studies on some doped cds thin films deposited by thermal evaporation. Thin Solid Films 515:6080–6084

    Article  CAS  Google Scholar 

  19. Lee WJ, Umana-Membreno GA, Dell J, Faraone L (2015) Substrate heating effects on properties of CdS thin films prepared by thermal evaporation for photovoltaic applications. In: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, pp 1–4. https://doi.org/10.1109/PVSC.2015.7355788

  20. Somorjai GA, Jepsen DW (1964) Evaporation mechanism of cds single crystals diffusion controlled evaporation of cadmium- and sulfur-doped cds. J Chem Phys 41:1394–1399

    Article  CAS  Google Scholar 

  21. Mahdi MA, Hassan JJ, Kasim SJ, Ng SS, Hassan Z (2014) Optical properties of cds micro/nanocrystalline structures prepared via a thermal evaporation method. Mater Sci Semicond Process 26:87–92

    Article  CAS  Google Scholar 

  22. Mahmoud SA, Ibrahim AA, Riad AS (2000) Physical properties of thermal coating cds thin films using a modified evaporation source. Thin Solid Films 372:144–148

    Article  CAS  Google Scholar 

  23. Nevruzoglu V, Manir M, Ozturk G (2020) Investigation of the electrical properties of Ag/n-Si schottky diode obtained by two different methods. J Ceram Process Res 21:256–262

    Google Scholar 

  24. Yuzuak GD, Yuzuak E, Nevruzoglu V, Dincer I (2019) Role of low substrate temperature deposition on Co-Fe thin films. Appl Phys A-Mater Sci Process 125:11

    Article  Google Scholar 

  25. Tomakin M, Altunbaş M, Bacaksiz E, Çelik Ş (2012) Current transport mechanism in CdS thin films prepared by vacuum evaporation method at substrate temperatures below room temperature. Thin Solid Films 520:2532–2536

    Article  CAS  Google Scholar 

  26. Bacaksiz E, Altunbaş M, Yılmaz S, Tomakin M, Parlak M (2007) Effects of CdCl2 treatment on properties of CdTe thin films grown by evaporation at low substrate temperatures. Cryst Res Technol 42:890–894

    Article  CAS  Google Scholar 

  27. Rehman Q, Khan AD, Khan AD, Noman M, Ali H, Raufd A, Ahmada MS (2019) Super absorption of solar energy using a plasmonic nanoparticle based CdTe solar cell. Royal Soc Chem 9:34207

    CAS  Google Scholar 

  28. Rahmani A, Vatankhah S (2017) Improving the efficiency of thin film amorphous silicon solar cell by changing the location and material of plasmonic metallic nanostructures. Energy Procedia 141:8–12

    Article  CAS  Google Scholar 

  29. Enrichia F, Quandt A, Righinia GC (2018) Plasmonic enhanced solar cells: Summary of possible strategies and recent results. Renew Sustain Energy Rev 82:2433–2439

    Article  Google Scholar 

  30. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8:95–103

    Article  CAS  Google Scholar 

  31. Ameen M, Ali KS, Rahman LM, Ali M, Akhtaruzzaman K, Sopiana S, Radiman N, Aminab A (2017) Computational study on the energy bandgap engineering in performance enhancement of CdTe thin film solar cells. Results Phys 7:1066–1072

    Article  Google Scholar 

  32. Khan ZR, Zulfequar M, Khan MS (2012) Structural, optical, photoluminescence, dielectric andelectrical studies of vacuum-evaporated CdTe thin films. Bull Mater Sci 35:169–174

    Article  CAS  Google Scholar 

  33. Ho WJ, Feng SK, Liu JJ, Yang YC, Ho CH (2018) Improving Photovoltaic performance of silicon solar cells using a combination of plasmonic and luminescent downshifting effects. Appl Surf Sci 439:868–875

    Article  CAS  Google Scholar 

  34. Wen JH, Sheng KF, Jheng JL (2017) Plasmonic effects of silver nanoparticles with various dimensions embedded and non-embedded in silicon dioxide antireflective coating on silicon solar cells. Appl Phys A 124:1–8

    Google Scholar 

  35. Fahim N, Ouyang Z, Zhang Y, Jia B, Shi Z, Gu M (2012) Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process. Opt Mater Express 2:190–204

    Article  CAS  Google Scholar 

  36. Ghosh B, Mondal NK, Banerjee P, Pal J, Das S (2002) A method for forming low resistance contact to p–CdTe. IEEE Trans Electron Devices 49:2352–2355

    Article  CAS  Google Scholar 

  37. Senthilkumar N, Arulraj A, Nandhakumar E, Ganapathy M, Vimalan M, Potheher IV (2018) Green mediated synthesis of plasmonic nanoparticle (Ag) for antireflection coating in bare mono silicon solar cell. J Mater Sci: Mater Electron 29:12744–12753

    CAS  Google Scholar 

  38. Zhixin L, Ling X, Wengping Z, Zhaoyun G, Jun X, Weining S, Yao Y, Zhongyuan M, Kunji C (2015) Extended short-wavelength spectral response of organic/(silver nanoparticles/Si nanoholes nanocomposite Films) hybrid solar cells due to localized surface plasmon resonance. Appl Surf Sci 334:110–114

    Article  Google Scholar 

  39. Choudhury SA, Nawshin N, Chowdhury MH (2017) Influence of particle shape on the efficacy of plasmonic metal nanoparticles to enhance the energy conversion efficiency of thin-film solar cells. In: TENCON 2017 - 2017 IEEE Region 10 Conference, Penang, Malaysia, pp 2393–2398. https://doi.org/10.1109/TENCON.2017.8228262

  40. Belyaev AP, Rubets VP, Kalinkin IP (2003) Mater Phys Mech 6:58

    CAS  Google Scholar 

  41. Ogundare OD, Akinribide OJ, Adetunji AR, Adeoye MO, Olubambi PA (2019) Crystallite size determination of thermally deposited Gold Nanoparticles. Procedia Manuf 30:173–179

    Article  Google Scholar 

  42. Singh AK, Srivastava ON (2015) One-step green synthesis of gold nanoparticles using black cardamom and effect of pH on its synthesis. Nanoscale Res Lett 10:353

    Article  PubMed  PubMed Central  Google Scholar 

  43. Beversluis MR, Bouhelier A, Novotny L (2003) Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys Rev B 68:11

    Article  Google Scholar 

  44. Dulkeith E, Niedereichholz T, Klar TA, Feldmann J, von Plessen G, Gittins DI, Mayya KS, Caruso F (2004) Plasmon emission in photoexcited gold nanoparticles. Phys Rev B 70:205424

    Article  Google Scholar 

  45. Amran TST, Hashim MR, Al-Obaidi NKA et al (2013) Optical absorption and photoluminescence studies of gold nanoparticles deposited on porous silicon. Nanoscale Res Lett 8:35

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yorulmaz M, Khatua S, Zijlstra P, Gaiduk A, Orrit M (2012) Luminescence quantum yield of single gold nanorods. Nano Lett 12:4385–4391

    Article  CAS  PubMed  Google Scholar 

  47. Noginov MA, Zhu G, Gavrilenko VI (2007) Sensitized nonlinear emission of gold nanoparticles. Opt Express 15:15648–15655

    Article  CAS  PubMed  Google Scholar 

  48. Alluhaybi HA, Ghoshal SK, Alsobhi BO, Wan Shamsuri WN (2019) Visible photoluminescence from gold nanoparticles: A basic insight. Optic 192:162936

    CAS  Google Scholar 

  49. Desarkar HS, Kumbhakar P, Mitra AK (2012) Linear optical absorption and photoluminescence emission properties of gold nanoparticles prepared by laser ablation technique. Appl Phys A 108:81–89

    Article  CAS  Google Scholar 

  50. Gao N, Chen Y, Li L, Guan Z, Zhao T, Zhou N, Yuan P, Yao QS, Xu QH (2014) Shape-dependent two-photon photoluminescence of single gold nanoparticles. J Phys Chem C 118:13904–13911

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out within the scope of Erciyes University, Scientific Research Projects Unit Project No. FDK-2022-12367 and with the support of TÜBİTAK 2211/C National PhD Scholarship Program in the Priority Fields in Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

M.M., G.G., V.N., M.T., and A.E.C. fabricated, and performed the optical and material characterization of the films. All authors prepared and reviewed the manuscript.

Corresponding author

Correspondence to Melih Manir.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manir, M., Genç, G., Nevruzoglu, V. et al. Fabrication of Gold Thin Films on Cooled Glass Substrates. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02302-8

Keywords

Navigation