Skip to main content
Log in

Linear optical absorption and photoluminescence emission properties of gold nanoparticles prepared by laser ablation technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Gold nanoparticles of average size varying between 1.1 and 3.3 nm are prepared by 1064 nm Nd:YAG laser ablation of solid gold target kept in ethylene glycol medium. The measured UV-Visible absorption spectra showed the presence of sharp absorption peaks in the UV and in the visible regions due to the interband transition and surface plasmon resonance (SPR) oscillations in Au nanoparticles, respectively. The increase in linewidth of the SPR peaks with the reduction in particle sizes is observed due to intrinsic size effects. The prepared samples exhibit photoluminescence (PL) emissions in the UV-Visible region peaked at ∼354 nm due to the recombination of electrons with holes from sp conduction band to d-band of Au. The peak PL intensity in the sample prepared with 60 minutes of laser ablation time is enhanced by a factor of ∼2.5 compared to that obtained in the sample prepared with a laser-ablation time duration of 15 minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  2. H. Metiu, P. Das, Annu. Rev. Phys. Chem. 35, 507 (1984)

    Article  ADS  Google Scholar 

  3. H. Metiu, Prog. Surf. Sci. 17, 153 (1984)

    Article  ADS  Google Scholar 

  4. S. Sun, H. Zeng, D.B. Robinson, S. Roux, P.M. Rice, S.X. Wang, G. Li, J. Am. Chem. Soc. 126, 273 (2004)

    Article  Google Scholar 

  5. T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. El-Sayed, Science 272, 1996 (1924)

    Google Scholar 

  6. H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Peng, G.Q. Xu, Langmuir 12, 909 (1996)

    Article  Google Scholar 

  7. M.A. Anderson, S. Gorer, R.M. Penner, J. Phys. Chem. B 101, 5895 (1997)

    Article  Google Scholar 

  8. H. Zhang, M. Mostafav, J. Phys. Chem. B 101, 8443 (1997)

    Article  Google Scholar 

  9. N. Herron, J.C. Calabrese, W.E. Farneth, Y. Wang, Science 259, 1426 (1993)

    Article  ADS  Google Scholar 

  10. R. Antonine, M. Pellarin, B. Pappant, B. Prevel, P. Galletto, P.F. Brevet, H.H. Girault, J. Appl. Phys. 84, 4532 (1998)

    Article  ADS  Google Scholar 

  11. B. Balamurugan, B.R. Mehta, S.M. Shiva Prasad, Appl. Phys. Lett. 79, 3176 (2001)

    Article  ADS  Google Scholar 

  12. C. Prados, M. Multigner, A. Herando, J.C. Sanchez, A. Fernandez, C.F. Conde, A. Conde, J. Appl. Phys. 85, 6118 (1999)

    Article  ADS  Google Scholar 

  13. S. Huang, K. Minami, H. Sakaue, S. Shingubara, T. Takahagi, J. Appl. Phys. 92, 7486 (2002)

    Article  ADS  Google Scholar 

  14. S.K. Ghosh, S. Nath, S. Kundu, K. Esumi, T. Pal, J. Phys. Chem. B 108, 13963 (2004)

    Article  Google Scholar 

  15. B. Balamurugan, T. Maruyama, Appl. Phys. Lett. 87, 143105 (2005)

    Article  ADS  Google Scholar 

  16. S. Link, C. Burda, B. Nikoobakht, M.A. El-Sayed, J. Phys. Chem. B 104, 6152 (2000)

    Article  Google Scholar 

  17. S.I. Dolgaev, A.V. Simakin, V.V. Voronov, G.A. Shafeev, F.B. Verduraz, Appl. Surf. Sci. 186, 546 (2002)

    Article  ADS  Google Scholar 

  18. J. Nedersen, G. Chumanov, T.M. Cotton, Appl. Spectrosc. 47, 1959 (1993)

    Article  ADS  Google Scholar 

  19. M.S. Yeh, Y.S. Yang, Y.P. Lee, H.F. Lee, Y.H. Yeh, C.S. Yeh, J. Phys. Chem. B 103, 6851 (1999)

    Article  Google Scholar 

  20. A.V. Simakin, V.V. Voronov, G.A. Shafeev, R. Brayner, F.B. Verduraz, Chem. Phys. Lett. 348, 182 (2001)

    Article  ADS  Google Scholar 

  21. F. Mafune, J.-y. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 106, 8555 (2002)

    Article  Google Scholar 

  22. J.S. Jeon, C. Yeh, J. Chin. Chem. Soc. 45, 721 (1998)

    Google Scholar 

  23. M. Prochazka, P. Mojzes, J. Stepanek, B. Clckova, P.Y. Turpin, Anal. Chem. 69, 5103 (1997)

    Article  Google Scholar 

  24. El Sayed, Int. Rev. Phys. Chem. 19, 409 (2000)

    Article  Google Scholar 

  25. F. Frederix, J.M. Friedt, K.H. Choi, A. Campitelli, D. Mondelaers, G. Maes, G. Borghs, Anal. Chem. 75, 6894 (2003)

    Article  Google Scholar 

  26. A. Pinchuk, G.V. Plessen, U. Kreibig, J. Phys. D 37, 3133 (2004)

    Article  ADS  Google Scholar 

  27. C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Chem. Eur. J. 8, 29 (2002)

    Google Scholar 

  28. T. Tsuji, K. Iryo, Y. Nishimura, M.J. Tsuji, Photochem. Photobiol. A 145, 201 (2001)

    Article  Google Scholar 

  29. U. Kreibig, M. Vollmer (eds.), Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Google Scholar 

  30. M.M. Alvarez, T.J. Khoury, G.T. Schaaff, N.M. Shafigullin, I. Vezmar, L.R. Whetten, J. Phys. Chem. B 101, 3706 (1997)

    Article  Google Scholar 

  31. U. Kreibig, U. Genzel, Surf. Sci. 156, 678 (1985)

    Article  ADS  Google Scholar 

  32. S. Link, M.A. El Sayed, J. Phys. Chem. B 103, 8410 (1999)

    Article  Google Scholar 

  33. E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, G.A. Shafeev, Opt. Express 17, 15 (2009)

    Article  Google Scholar 

  34. P.V. Kazakevich, V.V. Voronov, A.V. Simakin, G.A. Shafeev, Quantum Electron. 34, 10 (2004)

    Article  Google Scholar 

  35. V. Amendola, M. Meneghetti, J. Phys. Chem. C 113, 4277 (2009)

    Article  Google Scholar 

  36. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  37. A. Mooradian, Phys. Rev. Lett. 22, 185 (1969)

    Article  ADS  Google Scholar 

  38. G.T. Boyd, Z.H. Yu, Y.R. Shen, Phys. Rev. B 33, 7923 (1986)

    Article  ADS  Google Scholar 

  39. M.B. Mohamed, V. Volkov, S. Link, M.A. El-Sayed, Chem. Phys. Lett. 317, 517 (2000)

    Article  ADS  Google Scholar 

  40. O.P. Varnavski, M.B. Mohamed, M.A. El-Sayed, Th. Goodson, J. Phys. Chem. B 107, 3101 (2003)

    Article  Google Scholar 

  41. M.R. Beversluis, A. Bouhelier, L. Novotny, Phys. Rev. B 68, 115433 (2003)

    Article  ADS  Google Scholar 

  42. J.P. Wilcoxon, J.E. Martin, F. Parsapour, B. Wiedenman, D.F. Kelley, J. Chem. Phys. 108, 9137 (1998)

    Article  ADS  Google Scholar 

  43. M.A. Noginov, G. Zhu, V.I. Gavrilenko, Opt. Express 15, 15649 (2007)

    Article  ADS  Google Scholar 

  44. R. Sarkar, P. Kumbhakar, A.K. Mitra, R.A. Ganeev, Curr. Appl. Phys. 10, 853 (2010)

    Article  ADS  Google Scholar 

  45. S.L. Smitha, K.M. Nissamudeen, D. Philip, K.G. Gopchandran, Spectrochim. Acta. Part A 71, 186 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to DST, Grant No. SR/FTP/PS-67/2008, Govt. of India for the partial financial support. We are thankful to both the reviewers for their valuable comments and suggestions in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kumbhakar.

Additional information

A.K. Mitra retired from Dept. of Physics, NIT Durgapur, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desarkar, H.S., Kumbhakar, P. & Mitra, A.K. Linear optical absorption and photoluminescence emission properties of gold nanoparticles prepared by laser ablation technique. Appl. Phys. A 108, 81–89 (2012). https://doi.org/10.1007/s00339-012-7016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7016-1

Keywords

Navigation