Skip to main content
Log in

Synthesis and Characterization of Al2O3 Nanoparticles Using PLAL With Different Nd:YAG Laser Fluences for Photodetectors

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Al2O3 nanoparticles were created using laser ablation of an aluminum (Al) target in deionized water. The ablation process was carried out using three different laser fluences (12.7, 15.9, and 19.1 J/cm2). In this method, a 1064-nm Q-switched Nd:YAG laser with a 7-ns pulse width, 1-Hz repetition rate, and 100 pulses was used. The UV-visible absorption spectrum of the as-synthesized Al2O3 colloidal solution of nanoparticles showed an absorption maximum lying at 210 nm, which verified the presence of Al2O3 nanoparticles in deionized water. The bandgap of Al2O3 NPs decreased from 4.6 to 4.2 eV with the increased laser fluences. The fingerprint identification of Al2O3 colloidal nanoparticles was performed through FTIR spectroscopy analysis. The spectrum recorded several important stretch modes, including carbon, hydrogen, oxygen, and Al2O3 bands. Field emission scanning electron microscopy (SEM) was used to examine the morphology of Al2O3 nanoparticles produced at various laser fluences. It exposed the highly aggregated particles, which ranged in size from 91 nm to sub-micrometers. TEM images and size distribution of Al2O3 NPs showed that the partials size depended on laser fluence intensity. It showed that the majority of the nanoparticles produced by all of the ablated laser fluences have spherical shapes, with average particle sizes of 57, 70, and 117 nm at 12.7-, 15.9-, and 19.1-J/cm2 laser fluences, respectively. The effect of laser fluence on the photosensitivity of the Si detector based on the nanostructured Al2O3 film was studied. The photodetector showed strong responsiveness peaks at 350 and 800 nm, with values of about 1.2 AW−1 and 1.08 AW−1 corresponding to the responsiveness of the Al2O3 film and the Si substrate, respectively. It also displayed a high photo-detective value in the UV-Vis region. Therefore, nanosecond laser ablation in liquid is an efficient and adaptable approach for producing nanoparticles with customized size, shape, and properties. It is also a wonderful way to manufacture a variety of nanostructured materials that have applications in a variety of industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are included within the article. If more information is required, the authors can provide it upon request.

References

  1. Ueda W, Sadakane M, Ogihara H (2008) Nano-structuring of complex metal oxides for catalytic oxidation. Catal Today 132(1–4):2–8

    Article  CAS  Google Scholar 

  2. Gessner T, Gottfried K, Hoffmann R, Kaufmann C, Weiss U, Charetdinov E, Hauptmann P, Lucklum R, Zimmermann B, Dietel U, Springer G (2000) Metal oxide gas sensor for high temperature application. Microsyst Technol 6:169–174

    Article  Google Scholar 

  3. Kim JH, Kim EK, Lee CH, Song MS, Kim YH, Kim J (2005) Electrical properties of metal-oxide semiconductor nano-particle device. Physica E 26(1–4):432–435

    Article  CAS  Google Scholar 

  4. Dalla Pria P (2007) Evolution and new application of the alumina ceramics in joint replacement. Eur J Orthop Surg Traumatol 17(3):253–256

    Article  Google Scholar 

  5. Farsi H, Gobal F (2007) Theoretical analysis of the performance of a model supercapacitor consisting of metal oxide nano-particles. J Solid State Electrochem 11:1085–1092

    Article  CAS  Google Scholar 

  6. Dillon AC, Mahan AH, Deshpande R, Parilla PA, Jones KM, Lee SH (2008) Metal oxide nano-particles for improved electrochromic and lithium-ion battery technologies. Thin Solid Films 516(5):794–797

    Article  CAS  Google Scholar 

  7. Saimon JA, Madhat SN, Khashan KS, Hassan AI (2018) Characterization of CdZnO/Si heterojunction photodiode prepared by pulsed laser deposition. Int J Mod Phys B 32(31):1850341

    Article  Google Scholar 

  8. Khashan KS, Hassan AI, Addie AJ (2016) Characterization of CuO thin films deposition on porous silicon by spray pyrolysis. Surf Rev Lett 23(05):1650044

    Article  CAS  Google Scholar 

  9. Elsayed KA, Munther Alomari QA, Drmosh MA, Baroot AA, Kayed TS, Manda AA, Al-Alotaibi AL (2022) Fabrication of ZnO-Ag bimetallic nanoparticles by laser ablation for anticancer activity. Alex Eng J 61(2):1449–1457

    Article  Google Scholar 

  10. Manda AA, Elsayed KA, Haladu SA, Cevik E, Ibrahim MB, Drmosh QA (2024) Catalytic activity of cellulose acetate butyrate/TiO2-Au nanocomposite film prepared by laser ablation for 2-nitrophenol reduction. J Polym Environ 32(1):182–193

    Article  CAS  Google Scholar 

  11. Al-Otaibi AL, Elsayed KA, Manda AA, Haladu SA, Gaya UI, Filiz Ercan TS, Kayed EC, Alhajri U, Ismail Ercan QA, Drmosh AE (2024) Pulsed laser ablation-mediated facile fabrication of MoO3/TiO2/rGO nanocomposite as a photocatalyst for dye degradation. Opt Laser Technol 170:110156

    Article  CAS  Google Scholar 

  12. Oskam G (2006) Metal oxide nanoparticles: synthesis, characterization and application. J Sol-Gel Sci Technol 37(3):161–164

    Article  CAS  Google Scholar 

  13. Gudkov SV, Burmistrov DE, Smirnova VV, Semenova AA, Lisitsyn AB (2022) A mini review of antibacterial properties of Al2O3 nanoparticles. Nanomaterials 12(15):2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chavali MS, Nikolova MP (2019) Metal oxide nanoparticles and their applications in nanotechnology. SN applied sciences 1(6):1–30

    Article  Google Scholar 

  15. Nikolova MP, Chavali MS (2020) Metal oxide nanoparticles as biomedical materials. Biomimetics 5(2):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hadi AA, Badr BA, Mahdi RO, Khashan KS (2020) Rapid laser fabrication of nickel oxide nanoparticles for UV detector. Optik 219:165019

    Article  CAS  Google Scholar 

  17. Bader BA, Hadi IH, Slewa MY, Khashan KS, Abdulameer FA (2022) Photodetector based on titanium oxide nanoparticles produced via pulsed laser ablation. Adv Condens Matter Phys 2022: Article ID 8066167. https://doi.org/10.1155/2022/8066167

  18. Hart LD, Lense E (eds) (1990) Alumina chemicals: science and technology handbook. John Wiley & Sons

  19. Laachachi A, Ferriol M, Cochez M, Cuesta JML, Ruch D (2009) A comparison of the role of boehmite (AlOOH) and alumina (Al2O3) in the thermal stability and flammability of poly (methyl methacrylate). Polym Degrad Stab 94(9):1373–1378

    Article  CAS  Google Scholar 

  20. Lukić I, Krstić J, Jovanović D, Skala D (2009) Alumina/silica supported K2CO3 as a catalyst for biodiesel synthesis from sunflower oil. Biores Technol 100(20):4690–4696

    Article  Google Scholar 

  21. Touzin M, Goeuriot D, Guerret-Piecourt C, Juvé D, Fitting HJ (2010) Alumina based ceramics for high-voltage insulation. J Eur Ceram Soc 30(4):805–817

    Article  CAS  Google Scholar 

  22. Keyvani A, Saremi M, Sohi MH (2010) Microstructural stability of zirconia–alumina composite coatings during hot corrosion test at 1050°C. J Alloy Compd 506(1):103–108

    Article  CAS  Google Scholar 

  23. Lach R, Haberko K, Bućko MM, Szumera M, Grabowski G (2011) Ceramic matrix composites in the alumina/5–30 vol.% YAG system. J Eur Ceram Soc 31(10):1889–1895

    Article  CAS  Google Scholar 

  24. Garces NY, Meyer DJ, Wheeler VD, Liliental-Weber Z, Gaskill DK, Eddy CR (2014) Plasma-assisted atomic layer deposition of nanolaminates for gate dielectric applications. J Vac Sci Technol B 32:03D101. https://doi.org/10.1116/1.4818254

    Article  CAS  Google Scholar 

  25. Tallarida M, Weisheit M, Kolanek K, Michling M, Engelmann HJ, Schmeißer D (2011) Atomic layer deposition of nanolaminate oxide films on Si. J Nanopart Res 13:5975–5983

    Article  CAS  Google Scholar 

  26. Dingemans G, Kessels WMM (2012) Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. J Vac Sci Technol A 30:040802. https://doi.org/10.1116/1.4728205

    Article  CAS  Google Scholar 

  27. Gunjo DG, Jena SR, Mahanta P, Robi PS (2018) Melting enhancement of a latent heat storage with dispersed Cu, CuO and Al2O3 nanoparticles for solar thermal application. Renew Energy 121:652–665

    Article  CAS  Google Scholar 

  28. Granados-Ortiz FJ, Leon-Prieto L, Ortega-Casanova J (2021) Computational study of the application of Al2O3 nanoparticles to forced convection of high-Reynolds swirling jets for engineering cooling processes. Eng Appl Comput Fluid Mech 15(1):1–22

    Google Scholar 

  29. Rezvani H, Panahpoori D, Riazi M, Parsaei R, Tabaei M, Cortés FB (2020) A novel foam formulation by Al2O3/SiO2 nanoparticles for EOR applications: a mechanistic study. J Mol Liq 304:112730

    Article  CAS  Google Scholar 

  30. Prakash A, Satsangi S, Mittal S, Nigam B, Mahto PK, Swain BP (2018) Investigation on Al2O3 nanoparticles for nanofluid applications—a review. In IOP conference series: materials science and engineering, vol 377, 1st edn. IOP Publishing, p 012175

    Google Scholar 

  31. Manikandan V, Jayanthi P, Priyadharsan A, Vijayaprathap E, Anbarasan PM, Velmurugan P (2019) Green synthesis of pH-responsive Al2O3 nanoparticles: application to rapid removal of nitrate ions with enhanced antibacterial activity. J Photochem Photobiol, A 371:205–215

    Article  CAS  Google Scholar 

  32. Li D, Wang Z, Wu Y, Liu C, Arıcı M (2021) Experimental investigation on thermal properties of Al2O3 nanoparticles dispersed paraffin for thermal energy storage applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–11. https://doi.org/10.1080/15567036.2021.1916133

  33. Hassanpour P, Panahi Y, Ebrahimi-Kalan A, Akbarzadeh A, Davaran S, Nasibova AN, Khalilov R, Kavetskyy T (2018) Biomedical applications of aluminium oxide nanoparticles. Micro Nano Lett 13(9):1227–1231

    Article  CAS  Google Scholar 

  34. Zawrah MF, Khattab RM, Girgis LG, El Daidamony H, Abdel Aziz RE (2016) Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J 12(3):227–234

    Article  Google Scholar 

  35. Mohammed AS (2018) UHMWPE nanocomposite coatings reinforced with alumina (Al2O3) nanoparticles for tribological applications. Coatings 8(8):280

    Article  Google Scholar 

  36. Ghotekar S (2019) Plant extract mediated biosynthesis of Al2O3 nanoparticles—a review on plant parts involved, characterization and applications. Nanochem Res 4(2):163–169

    CAS  Google Scholar 

  37. Sahota L, Tiwari GN (2016) Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Sol Energy 130:260–272

    Article  CAS  Google Scholar 

  38. Ziva AZ, Suryana YK, Kurniadianti YS, Nandiyanto ABD, Kurniawan T (2021) Recent progress on the production of aluminum oxide (Al2O3) nanoparticles: a review. Mech Eng Soc Ind 1(2):54–77

    Article  Google Scholar 

  39. Rajaeiyan A, Bagheri-Mohagheghi MM (2013) Comparison of sol-gel and co-precipitation methods on the structural properties and phase transformation of γ and α-Al2O3 nanoparticles. Adv Manuf 1(2):176–182

    Article  CAS  Google Scholar 

  40. Baroot AA, Haladu SA, Magami SM, Sultan Akhat QA, Drmosh KA, Elsayed AA, Manda, (2023) Photocatalytic performance of Ag/TiO2/SiO2 nanocomposite synthesized by eco-friendly pulsed laser ablation technique. J Phys Chem Solids 180:111489

    Article  Google Scholar 

  41. Alheshaibri M, Kotb E, Haladu SA, Baroot AA, Drmosh QA, Ercan F, Cevik E, Elsayed KA (2023) Synthesis of highly stable Ag/Ta2O5 nanocomposite by pulsed laser ablation as an effectual antibacterial agent. Opt Laser Technol 162:109295

    Article  Google Scholar 

  42. Manda AA, Drmosh QA, Elsayed KA, Al-Otaibi AL, Alade IO, Onaizi SA, Dafalla HDM, Elhassan A (2022) Highly efficient UV–visible absorption of TiO2/Y2O3 nanocomposite prepared by nanosecond pulsed laser ablation technique. Arab J Chem 15(8):104004

    Article  CAS  Google Scholar 

  43. Manda AA, Elsayed KA, Ibrahim MB, Haladu SA, Ercan F, Cevik E, Ayhan Bozkurt TS, Kayed NA, Altamimi QA, Drmosh, (2023) Synthesis of CuO/α-Fe2O3 nanocomposite by Q-switched pulsed laser ablation and its catalytic activity for environmental applications. Arab J Sci Eng 48(6):7635–7646

    Article  CAS  Google Scholar 

  44. Baroot AA, Elsayed KA, Manda AA, Haladu SA, Magami SM, Emre Cevik QA, Drmosh, (2023) Efficient catalytic reduction of 2-nitrophenol using cellulose acetate butyrate/CuO nanocomposite prepared by laser ablation technique. J Polym Environ 31(7):2956–2967

    Article  Google Scholar 

  45. Khashan KS, Abbas SF (2019) Indium nitride nanoparticles prepared by laser ablation in liquid. Int J Nanosci 18(02):1850021

    Article  CAS  Google Scholar 

  46. Fadhil FA, Hasoon BA, Hussein NN, Khashan KS (2018) Preparation and characterization of CuO NPs via laser ablation under electric field and study their antibacterial activity. AIP Conf Proc 2045:020002. https://doi.org/10.1063/1.5080815

    Article  CAS  Google Scholar 

  47. Khashan KS, Hadi AA, Hasan IF (2022) Green synthesis of TiO2@MWCNTs composites by pulsed laser ablation in liquid. Appl Phys A 128(9):1–13

    Article  Google Scholar 

  48. Khashan KS, Badr BA, Sulaiman GM, Jabir MS, Hussain SA (2021) Antibacterial activity of zinc oxide nanostructured materials synthesis by laser ablation method. J Phys: Conf Ser 1795:012040. https://doi.org/10.1088/1742-6596/1795/1/012040

    Article  CAS  Google Scholar 

  49. Solati E, Dejam L, Dorranian D (2014) Effect of laser pulse energy and wavelength on the structure, morphology and optical properties of ZnO nanoparticles. Opt Laser Technol 58:26–32

    Article  CAS  Google Scholar 

  50. Piriyawong V, Thongpool V, Asanithi P, Limsuwan P (2012) Effect of laser pulse energy on the formation of alumina nanoparticles synthesized by laser ablation in water. Procedia Eng 32:1107–1112

    Article  CAS  Google Scholar 

  51. Hameed R, Khashan KS, Sulaiman GM (2020) Preparation and characterization of graphene sheet prepared by laser ablation in liquid. Materials Today: Proceedings 20:535–539

    CAS  Google Scholar 

  52. Paeng D, Yeo J, Lee D, Moon SJ, Grigoropoulos CP (2015) Laser wavelength effect on laser-induced photo-thermal sintering of silver nanoparticles. Appl Phys A 120(4):1229–1240

    Article  CAS  Google Scholar 

  53. Ismail RA, Al-Samarai AME, Mohammed WM (2018) Preparation of n-ZnO/p-Si heterojunction photodetector via rapid thermal oxidation technique: effect of oxidation time. Appl Phys A 124(8):1–11

    Article  Google Scholar 

  54. Piriyawong V, Thongpool V, Asanithi P, Limsuwan P (2012) Preparation and characterization of alumina nanoparticles in deionized water using laser ablation technique. J Nanomater 2012:1–6

    Article  Google Scholar 

  55. Stratakis E, Barberoglou M, Fotakis C, Viau G, Garcia C, Shafeev GA (2009) Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses. Opt Express 17(15):12650–12659

    Article  CAS  PubMed  Google Scholar 

  56. Al Baroot A, Drmosh QA, Alade IO, Elsayed KA, Alheshibri M, Kotb E, AlQahtani HR, Al Qahtani HS (2022) Investigating the antibacterial activity of nanostructured tungsten oxide prepared by pulsed laser ablation at different hydrogen peroxide concentrations. Opt Mater 133:112886

    Article  CAS  Google Scholar 

  57. Moura CG, Pereira RSF, Andritschky M, Lopes ALB, de Freitas Grilo JP, do Nascimento, R.M. and Silva, F.S., (2017) Effects of laser fluence and liquid media on preparation of small Ag nanoparticles by laser ablation in liquid. Opt Laser Technol 97:20–28

    Article  CAS  Google Scholar 

  58. Rasheed ZN, Yass M, Khashan KS, Saimon JA, Hadi AA, Mahdi RO (2024) Influence of laser energy on optoelectronic properties of NiO NPs/Si heterojunction based on NiO NPs prepared by laser ablation in liquid. AIP Conf Proc 2922:240003-1–240003-10

    Google Scholar 

  59. Balachandran A, Sreenilayam SP, Madanan K, Thomas S, Brabazon D (2022) Nanoparticle production via laser ablation synthesis in solution method and printed electronic application—a brief review. Results Eng 16

    Article  CAS  Google Scholar 

  60. Khashan KS, Saimon JA, Hadi AA, Mahdi RO (2021) Influence of laser energy on the optoelectronic properties of NiO/Si heterojunction. J Phys: Conf Ser 1795:012026

    CAS  Google Scholar 

  61. Hasan IF, Khashan KS, Hadi AA (2022) Study of the effect of laser energy on the structural and optical properties of TiO2 NPs prepared by PLAL technique. J Appl Sci Nanotechnol 2(1):11–19

    Article  Google Scholar 

  62. Stratakis E, Zorba V, Barberoglou M, Fotakis C, Shafeev GA (2009) Femtosecond laser writing of nanostructures on bulk Al via its ablation in air and liquids. Appl Surf Sci 255(10):5346–5350

    Article  CAS  Google Scholar 

  63. Viau G, Collière V, Lacroix LM, Shafeev GA (2011) Internal structure of Al hollow nanoparticles generated by laser ablation in liquid ethanol. Chem Phys Lett 501(4–6):419–422

    Article  CAS  Google Scholar 

  64. Wei J, Song X, Yang C, Hu MZ (2013) 1D nanostructures: controlled fabrication and energy applications. J Nanomater 2013: Article ID 674643. https://doi.org/10.1155/2013/674643

  65. Abbasi M, Dorranian D (2015) Effect of laser fluence on the characteristics of Al nanoparticles produced by laser ablation in deionized water. Opt Spectrosc 118(3):472–481

    Article  CAS  Google Scholar 

  66. Djebaili K, Mekhalif Z, Boumaza A, Djelloul AXPS (2015) XPS, FTIR, EDX, and XRD analysis of Al2O3 scales grown on PM2000 alloy. J Spectrosc 2015: Article ID 868109. https://doi.org/10.1155/2015/868109

  67. Li YH, Zhao Y, Li XM, Zhang ZG, Ye XP, Zhong J, Cai LC, Zhang L (2016) In situ measurement of the particle size distribution of the fragmentation product of laser-shock-melted aluminum using in-line picosecond holography. AIP Adv 6(2):025208

    Article  Google Scholar 

  68. Addie A, Khashaan KS, Saimon J, Hassan A (2021) Impact of laser energy on features of carbon nanostructure materials prepared by a one-step pulsed laser ablation in water. Iraqi J Sci 62(7):2197–2203

    Article  Google Scholar 

  69. Khashan KS, Taha JM, Abbas SF (2017) Fabrication and properties of InN NPs/Si as a photodetector. Energy Procedia 119:656–661

    Article  CAS  Google Scholar 

  70. Khashan KS, Mahdi RO, Badr BA, Mahdi F (2021) Preparation and characterization of ZnMgO nanostructured materials as a photodetector. In Journal of Physics: Conference Series, vol 1795, 1st edn. IOP Publishing, p 012008

    Google Scholar 

  71. Rajab FH, Taha RM, Hadi AA, Khashan KS, Mahdi RO (2023) Laser induced hydrothermal growth of ZnO rods for UV detector application. Opt Quant Electron 55(3):208

    Article  CAS  Google Scholar 

  72. Qian H, Zhang X, Ma Y, Zhang L, Chen T, Wei X, Tang W, Zhou X, Feng B, Fan Y, Sun Y (2022) Quasi-vertical ε-Ga2O3 solar-blind photodetectors grown on p-Si substrates with Al2O3 buffer layer by metalorganic chemical vapor deposition. Vacuum 200:111019

    Article  CAS  Google Scholar 

  73. Khalifa MJ, Jaduaa MH, Abd AN (2021) Al2O3 NPs/porous silicon/silicon photovoltaic device. Journal of Physics: Conference Series, vol 1853, 1st edn. IOP Publishing, p 012046

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the University of Technology-Iraq.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed different sections to this article. Khawla S. Khashan conceptualized and oversaw the project; Fattin A. Fadhil and Iman H. Hadi conducted the literature review and methodology; Ban A. Bader, Jehan A. Saimon, and Rana O. Mahdi performed the experiment and analysis; and Khawla S. Khashan and Aseel A. Hadi wrote the entire manuscript. The published version of the manuscript has been read and approved by all authors.

Corresponding author

Correspondence to Khawla S. Khashan.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saimon, J.A., Mahdi, R.O., Hadi, A.A. et al. Synthesis and Characterization of Al2O3 Nanoparticles Using PLAL With Different Nd:YAG Laser Fluences for Photodetectors. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02288-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02288-3

Keywords

Navigation