Skip to main content
Log in

Electrostatic Surface Waves in Magnetized Quantum Plasma Half-Space with Application of Metallic Gold

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a comprehensive study on the characteristics of electrostatic surface waves in a magnetized quantum plasma half-space with an oriented magnetic field. By analytically investigating the system under the influence of quantum diffraction and Fermi pressure, we employ the quantum hydrodynamic model (QHD) and the specular reflection boundary conditions at the plasma-vacuum interface to accurately capture quantum effects. We analyze dispersion relations for two specific cases of magnetic field orientation: parallel and perpendicular to the interface. Our findings reveal that dispersion relations for parallel orientations are influenced by the magnetic field effects, leading to higher frequencies in the surface waves. We numerically plot the dispersion relations and explore the effects of parameters specific to metallic gold plasma, including plasma density, Fermi velocity, and external static magnetic field on the behavior of surface waves. It is shown that increasing plasma density and cyclotron frequency enhance the frequency of surface waves. For greater values of Fermi velocity, a significant decrease in the surface plasmon frequency is observed. We present a comparative analysis of our work with an earlier classical model, based on the electrostatic approximation for a magnetized warm plasma bounded by vacuum, with the magnetic field oriented arbitrarily to the interface, revealing that our model facilitates the propagation of surface plasma waves with higher frequencies across the wave vector. Our study underscores the importance of quantum effects for electrostatic surface plasma waves in dense metallic gold plasmas at room temperature, with potential applications in waveguide structures and related areas such as signal processing, communication systems, sensing devices, quantum dot devices, and metallic gold nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availibility

All data that support the findings of this study are included within the article (and any supplementary files) and available from the corresponding author on reasonable request.

References

  1. Chabrier G, Saumon D, Potekhin Y (2006) J Phys A 39:4411

    Article  CAS  Google Scholar 

  2. Esaki L (1999) Nanostruct Mater 12:1–4. https://doi.org/10.1016/S0965-9773(99)00055-0

    Article  Google Scholar 

  3. Milun M, Pervan P, Woodruff DP (2002) Rep Prog Phys 65:99

    Article  CAS  Google Scholar 

  4. Kroemer H (1963) Proc IEEE 51(12):1782–1783

    Article  Google Scholar 

  5. Saumon D, Hubbard WB, Chabrier G, van Horn HM (1992) Astrophys J 391:827–831

    Article  CAS  Google Scholar 

  6. Haensel P, Potekhin AY, Yakovlev DG (2006) Neutron Stars 1: equation of state and structure. Springer, New York

    Google Scholar 

  7. Hausoel A, Karolak M, Sasoglu E, Lichtenstein A, Held K, Katanin A, Toschi A, Sangiovanni G (2017) Nat Commun 8:16062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moses EI, Boyd RN, Remington BA, Keane CJ, Al-Ayat R (2009) Phys Plasmas 16:041006

    Article  Google Scholar 

  9. Ren J, Maurer C, Katrik P, Lang PM, Golubev AA, Mintsev V, Zhao Y, Hoffmann DHH (2018) Contrib Plasma Phys 58:82–92

    Article  CAS  Google Scholar 

  10. Sperling P, Gamboa EJ, Lee HJ, Chung HK, Galtier E, Omarbakiyeva Y, Reinholz H, Röpke G, Zastrau U, Hastings J, Fletcher LB, Glenzer SH (2015) Phys Rev Lett 115:115001

    Article  CAS  PubMed  Google Scholar 

  11. Shuryak E (2009) Physics of strongly coupled quark-gluon plasma. Prog Particle Nucl Phys 62:48–101

    Article  CAS  Google Scholar 

  12. Filinov VS, Ivanov YuB, Fortov VE, Bonitz M, Levashov PR (2013) Phys Rev C 87:035207

    Article  Google Scholar 

  13. Aziz MA (2012) Phys Lett A 376:169–178

    Article  Google Scholar 

  14. Lazar M, Shukla PK, Smolyakav A (2007) Phys Plasma 14

  15. Ass’ad AI, Ashour HS (2012) Turk J Phys 36:207

    Google Scholar 

  16. Hill RT (2015) Plasmonic biosensor. WIREs Nanomed Nanobiotechnol 7:152–168

    Article  CAS  Google Scholar 

  17. Ermini ML, Song CX, Špringer T, Homola J (2019) Front Chem 7:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uludag Y, Tothill IE (2012) Anal Chem 84:5898–5904

    Article  CAS  PubMed  Google Scholar 

  19. Shepherd CA, Hopkins AL, Navratilova I (2014) Prog Biophys Mol Biol 116:113–123

    Article  CAS  PubMed  Google Scholar 

  20. Ashley J, D’Aurelio R, Piekarska M, Temblay J, Pleasants M, Trinh L, Rodgers TL, Tothill IE (2018) Biosensors 8:E32

    Article  Google Scholar 

  21. La Spina R, Ferrero VEV, Aiello V, Pedotti M, Varani L, Lettieri T, Calzolai L, Haasnoot W, Colpo P (2017) Biosensors 8:E1

    Article  Google Scholar 

  22. Wang R, Wang W, Ren H (2014) J Chae Biosens Bioelectron 57:179–185

    Article  CAS  Google Scholar 

  23. Zhu J (2014) J Plasma Phys 81:905810110

    Article  Google Scholar 

  24. Mohamed BF (2010) Phys Scr 82:065502

    Article  Google Scholar 

  25. Mohamed BF, Elbasha NM (2015) Phys Plasmas 22:102101

    Article  Google Scholar 

  26. Mohamed BF, Albrulosy R (2013) J Mod Phys 4:327–330

    Article  Google Scholar 

  27. Stenflo L, Phys MYYu (2002) Plasmas 9:5129

    Article  CAS  Google Scholar 

  28. Stenflo L, Phys MYYu (2003) Plasmas 10:912

    Article  CAS  Google Scholar 

  29. Moradi A (2016) Phys Plasmas 23:084501

    Article  Google Scholar 

  30. Khorashadizadeh SM, Majedi S, Niknam AR (2018) Cont Plasma Phys 58:19

    Google Scholar 

  31. Gupta BD, Sharma AK, Li J (2023) Plasmonics-Based Optical Sensors and Detectors, 1st ed. Jenny Stanford Publishing, New York

  32. Adnan M, Murad A (2024) Ikramullah, Bibi Saba, Fida Younus Khattak. Phys Fluids 36:024106

    Article  CAS  Google Scholar 

  33. Lee HJ (1995) Plasma Phys Control Fusion 37:755–762

    Article  Google Scholar 

  34. Sita Janaki M, Dasgupta B (1998) Phys Plasmas 5(12):4117–4514

    Article  Google Scholar 

  35. Barr HC, Boyd TJM (1972) J Phys A 5:1108

    Article  Google Scholar 

  36. Alexandrov AF, Bogdankevich LS, Rukhadze AA (1984) Principles of plasma Electrodynamics. Springer, Berlin

    Book  Google Scholar 

  37. Stefan M (2014) On Models of Quantum Plasmas and their Nonlinear Implications. ISBN: 978-91-7601-008-2 Print and Media Umeå, Sweden

  38. Haas F (2011) Quantum Plasmas An Hydrodynamic Approach. Springer, New York, in Press

  39. Goldston RJ, Rutherford PH (1995) Introduction to Plasma Physics. Cambridge University Press

  40. Ali R, Burhan Z, Shah HA (2018) Result Phys 8:243–248. https://doi.org/10.1016/j.rinp.2017.11.037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Z.A. wrote the main manuscript text, with conceptual input and manuscript refinement provided by A.M. while U.K. performed the mathematical work and prepared all figures. All authors, Z.A., A.M., and U.K., actively participated in reviewing and finalizing the manuscript.

Corresponding author

Correspondence to Zulfiqar Ahmad.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khitab, U., Ahmad, Z. & Mushtaq, A. Electrostatic Surface Waves in Magnetized Quantum Plasma Half-Space with Application of Metallic Gold. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02287-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02287-4

Keywords

Navigation