Skip to main content
Log in

Electron-exchange and viscosity effects on propagation of surface plasmons in semi-bounded quantum plasmas

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Surface plasmons are collective excitations of electrons at the interface of a metal or plasma with a dielectric or vacuum. Due to their unique properties, this field has found numerous applications in nano-scale electronic devices, biomedical sensors, and electronic signal transmission. Thus, in this paper, we theoretically investigate the propagation of surface plasmon waves on the interface between a vacuum and a quantum plasma by deriving the dispersion relation using the quantum hydrodynamic model and applying boundary conditions. The main focus of the present study is to examine the effect of Fermi electron pressure, quantum Bohm potential, electron-exchange potential, and viscosity on the propagation and decay of surface plasmon waves in semi-bounded collisional quantum plasmas. In the electrostatic limit, the results show that the quantum effects, including Bohm potential and electron-exchange potential, facilitate the propagation of the surface plasmon waves. Also, the collision and viscosity effects have a significant role in the decay of these waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F-P Schmidt, H Ditlbacher, U Hohenester, A Hohenau, F Hofer and J R Krenn, Universal dispersion of surface plasmons in flat nanostructures, Nat. Commun. 5(1), 1 (2014)

    Article  Google Scholar 

  2. J W M Chon and K Iniewski, Nanoplasmonics: Advanced Device Applications (CRC Press, 2018)

    Book  Google Scholar 

  3. E J R Vesseur, R De Waele, H J Lezec, H A Atwater, F J García de Abajo and A Polman, Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused ion-beam milling, Appl. Phys. Lett. 92(8), 083110 (2008)

    Article  ADS  Google Scholar 

  4. H Hu, C Ma and Z Liu, Plasmonic dark field microscopy, Appl. Phys. Lett. 96(11), 113107 (2010)

    Article  ADS  Google Scholar 

  5. Y Huang and D-H Kim, Dark-field microscopy studies of polarization-dependent plasmonic resonance of single gold nanorods: Rainbow nanoparticles, Nanoscale 3(8), 3228 (2011)

    Article  ADS  Google Scholar 

  6. M A García, Surface plasmons in metallic nanoparticles: fundamentals and applications, J. Phys. D Appl. Phys. 44(28), 283001 (2011)

    Article  Google Scholar 

  7. A Demetriadou and A A Kornyshev, Principles of nanoparticle imaging using surface plasmons, New J. Phys. 17(1), 013041 (2015)

    Article  ADS  Google Scholar 

  8. N Venugopal and A Mitra, Optical transparency of Zno thin film using localized surface plasmons of Ag nanoislands, Opt. Mater. 35(7), 1467 (2013)

    Article  ADS  Google Scholar 

  9. K Uchida, H Adachi, D Kikuchi, S Ito, Z Qiu, S Maekawa and E Saitoh, Generation of spin currents by surface plasmon resonance, Nature Commun. 6(1), 1 (2015)

    Article  Google Scholar 

  10. S A Maier and H A Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures, J. Appl. Phys. 98(1), 10 (2005)

    Article  Google Scholar 

  11. I Zeba, M E Yahia, P K Shukla and W M Moslem, Electron–hole two-stream instability in a quantum semiconductor plasma with exchange-correlation effects, Phys. Lett. A 376(34), 2309 (2012)

    Article  ADS  Google Scholar 

  12. H-F Zhang, The band structures of three-dimensional nonlinear plasma photonic crystals, AIP Adv. 8(1), 015304 (2018)

    Article  ADS  Google Scholar 

  13. H Zhang, J Yang, H Zhang and J Liu, Design of an ultra-broadband absorber based on plasma metamaterial and lumped resistors, Opt. Mater. Express 8(8), 2103 (2018)

    Article  ADS  Google Scholar 

  14. H-F Zhang, H Zhang, Y Yao, J Yang and J-X Liu, A band enhanced plasma metamaterial absorber based on triangular ring-shaped resonators, IEEE Photonics J. 10(4), 1 (2018)

    Article  Google Scholar 

  15. Y-P Li, H-F Zhang, T Yang, T-Y Sun and L Zeng, A multifunctional polarization converter base on the solid-state plasma metasurface, IEEE J. Quantum Electronics 56(2), 1 (2020)

    Article  Google Scholar 

  16. K-D Xu, S Lu, Y-J Guo and Q Chen, High-order mode of spoof surface plasmon polaritons and its application in bandpass filters, IEEE Trans. Plasma Sci. 49(1), 269 (2020)

    Article  ADS  Google Scholar 

  17. R Nasirifar, M Danaie and A Dideban, Highly sensitive surface plasmon resonance sensor using perforated optical fiber for biomedical applications, Optik 168051 (2021)

  18. S Guo, X Wu, Z Li and K Tong, Temperature detection based on surface plasmon resonance at THz wave, Pramana J. Phys. 95(2), 1 (2021)

    Article  Google Scholar 

  19. S Koenig, D Lopez-Diaz, J Antes, F Boes, R Henneberger, A Leuther, A Tessmann, R Schmogrow, D Hillerkuss, R Palmer, T Zwick, C Koos, W Freude, O Ambacher, J Leuthold and I Kallfass, Wireless sub-THz communication system with high data rate, Nature Photonics 7, 977 (2013)

    Article  ADS  Google Scholar 

  20. H C Zhang, L P Zhang, P H He, J Xu, C Qian, F J Garcia-Vidal and T J Cui, A plasmonic route for the integrated wireless communication of subdiffraction-limited signals, Light Sci. Appl. 9, 113 (2020)

    Article  ADS  Google Scholar 

  21. Sh. Rahmatallahpur and A Rostami, Two-dimensional modeling and analysis of a nanometer transistor as a THz emitter, Phys. Plasmas 23(10) 102104 (2016)

    Article  ADS  Google Scholar 

  22. J Zhibin, W Yilun, C Liao, Y Yu, Y Shixing, D Wentao, W Ruolan, Z Wang, Y Qizhi, W Xiaojun and Z Xinliang, Antenna integrated silicon plasmonic graphene sub-terahertz emitter, APL Photonics 6(6), 066102 (2021)

    Article  Google Scholar 

  23. A K Nikitin, O V Khitrov and V V Gerasimov, Modeling of terahertz surface plasmon Fourier spectrometer, AIP Conf. Proc. 2299(1), 030005 (2020)

    Article  Google Scholar 

  24. M Lazar, P K Shukla and A Smolyakov, Surface waves on a quantum plasma half-space, Phys. Plasmas 14(12) 124501 (2007)

    Article  ADS  Google Scholar 

  25. M Marklund, G Brodin, L Stenflo and C S Liu, New quantum limits in plasmonic devices, Europhys. Lett. 84(1) 17006 (2008)

    Article  ADS  Google Scholar 

  26. A P Misra, N K Ghosh and P K Shukla, Surface waves in magnetized quantum electron-positron plasmas, J. Plasma Phys. 76(1) 87 (2010)

    Article  ADS  Google Scholar 

  27. A P Misra, Electromagnetic surface modes in a magnetized quantum electron-hole plasma, Phys. Rev. E 83(5), 057401 (2011)

    Article  ADS  Google Scholar 

  28. M Abdel Aziz, Propagation of a TE surface mode in a relativistic electron beam-quantum plasma system, Phys. Lett. A 376(3), 169 (2012)

    Article  ADS  MATH  Google Scholar 

  29. S M Khorashadizadeh, S T Boroujeni, E Rastbood and A R Niknam, Theoretical study of the surface waves in semi-bounded quantum collisional plasmas, Phys. Plasmas 19(3), 032109 (2012)

    Article  ADS  Google Scholar 

  30. J Zhu, H Zhao and M Qiu, Surface waves on the relativistic quantum plasma half-space, Phys. Lett. A 377(28–30), 1736 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Y-D Jung and W-P Hong, Quantum and geometric effects on the symmetric and anti-symmetric modes of the surface plasma wave, Phys. Lett. A 377(7), 560 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. A R Niknam, S T Boroujeni and S M Khorashadizadeh, Propagation of surface waves on a semi-bounded quantum magnetized collisional plasma, Phys. Plasmas 20(12), 122106 (2013)

    Article  ADS  Google Scholar 

  33. Y-Y Zhang, S-B An, Y-H Song, N Kang, Z L Mišković and Y-N Wang, Plasmon excitation in metal slab by fast point charge: the role of additional boundary conditions in quantum hydrodynamic model, Phys. Plasmas 21(10), 102114 (2014)

    Article  ADS  Google Scholar 

  34. C Li, Z Wu, W Yang and P K Chu, Surface electromagnetic wave equations in a warm magnetized quantum plasma, Phys. Plasmas 21(7), 072114 (2014)

    Article  ADS  Google Scholar 

  35. A Moradi, Surface plasmon oscillations on a quantum plasma half-space, Phys. Plasmas 22(1) 014501 (2015)

    Article  ADS  Google Scholar 

  36. A Ghosh, J Goswami, S Chandra, C Das, Y Arya and H Chhibber, Resonant interactions and chaotic excitation in nonlinear surface waves in dense plasma, IEEE Trans. Plasma Sci. (2021)

  37. W Tierens and L Colas, Slab-geometry surface waves on steep gradients and the origin of related numerical issues in a variety of ICRF codes, J. Plasma Phys. 87(4), 905870405 (2021)

    Article  Google Scholar 

  38. G Manfredi, How to model quantum plasmas? Fields Inst. Commun. 46, 263 (2005)

    MathSciNet  MATH  Google Scholar 

  39. P K Shukla and B Eliasson, Nonlinear aspects of quantum plasma physics, Phys. Uspekhi 53(1), 51 (2010)

    Article  ADS  Google Scholar 

  40. N Crouseilles, P-A Hervieux and G Manfredi, Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films, Phys. Rev. B 78(15), 155412 (2008)

    Article  ADS  Google Scholar 

  41. A Maroosh, H Ur-Rehman, Ch Rozina and S Mahmood, Magnetoacoustic nonlinear periodic wave and soliton structures in degenerate pair plasmas in the presence of exchange-correlation force, IEEE Trans. Plasma Sci. 49(11), 3441 (2021)

    Article  ADS  Google Scholar 

  42. P K Shukla and B Eliasson, Novel attractive force between ions in quantum plasmas, Phys. Rev. Lett. 108(16), 165007 (2012)

    Article  ADS  Google Scholar 

  43. C Das, S Chandra and B Ghosh, Effects of exchange symmetry and quantum diffraction on amplitude-modulated electrostatic waves in quantum magnetoplasma, Pramana J. Phys. 95(2), 1 (2021)

    Article  Google Scholar 

  44. M R Taghadosi, A R Niknam and S M Khorashadizadeh, Electron-exchange and correlation effects on filamentation instability of a high-density current-driven plasma, Phys. Plasmas 27(3), 032113 (2020)

    Article  ADS  Google Scholar 

  45. Y D Jung, Influence of the electron-exchange and quantum shielding on the bremsstrahlung spectrum in degenerate quantum plasmas, Phys. Plasmas 20(10), 103302 (2013)

    Article  ADS  Google Scholar 

  46. Y D Jung and M Akbari-Moghanjoughi, Electron-exchange effects on the charge capture process in degenerate quantum plasmas, Phys. Plasmas 21(3) 032108 (2014)

    Article  ADS  Google Scholar 

  47. S A Khan and S Hassan, Effects of electron exchange-correlation potential on electrostatic oscillations in single-walled carbon nanotubes, J. Appl. Phys. 115(20), 204304 (2014)

    Article  ADS  Google Scholar 

  48. C L Gardner, The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math. 54(2), 409 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. A Jüngel, J P Milišić et al, Physical and numerical viscosity for quantum hydrodynamics, Commun. Math. Sci. 5(2), 447 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. P Sharma and R K Chhajlani, The effect of spin induced magnetization on jeans instability of viscous and resistive quantum plasma, Phys. Plasmas 21(3) 032101 (2014)

    Article  ADS  Google Scholar 

  51. P Sharma and R K Chhajlani, Modified jeans instability of magnetized viscous spin 1/2 quantum plasma with resistive effects and hall current, Astrophys. Space Sci. 352(1) 175 (2014)

    Article  ADS  Google Scholar 

  52. P K Shukla and L Stenflo, Modulational instabilities of surface plasmons on metallic plasma surfaces with nanoparticles, J. Plasma Phys. 74(3), 287 (2008)

    Article  ADS  Google Scholar 

  53. M Lazar, W M Moslem, A Smolyakov and P K Shukla, Self-excited surface plasmon-polaritons at the interface of counterstreaming plasmas, Phys. Plasmas 16(5), 052102 (2009)

    Article  ADS  Google Scholar 

  54. L Hedin and B I Lundqvist, Explicit local exchange-correlation potentials, J. Phys. C Solid State Phys. 4(14), 2064 (1971)

    Article  ADS  Google Scholar 

  55. A F Alexandrov, L S Bogdankevich and A A Rukhadze, Principles of Plasma Electrodynamics (Springer, Heidelberg, 1984)

    Book  Google Scholar 

  56. T J Boyd, T J M Boyd and J J Sanderson, The Physics of Plasmas (Cambridge University Press, UK, 2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Taghadosi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghadosi, M., Boroujeni, S.T., Khorashadizadeh, S.M. et al. Electron-exchange and viscosity effects on propagation of surface plasmons in semi-bounded quantum plasmas. Pramana - J Phys 97, 158 (2023). https://doi.org/10.1007/s12043-023-02635-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02635-9

Keywords

PACS Nos.

Navigation