Skip to main content
Log in

Graphene-Based Tunable Metamaterial Absorber for Terahertz Sensing Applications

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Terahertz (THz) absorbers, vital in advanced materials and photonics, manipulate electromagnetic waves within the 0.1 to 10 THz frequency range. These absorbers, crafted from nanostructures and metamaterials, offer applications in imaging, sensing, and communications. Diverse absorber strategies, including metamaterial-based, plasmonic, graphene-based, and photonic crystal, exploit unique physical phenomena for exceptional THz absorption. The evolution of these absorbers is propelled by advancements in fabrication techniques and computational modeling. Graphene, a two-dimensional carbon material, stands out for terahertz applications with broadband absorption, ultrafast response time, and tunability. This study presents two model graphene-based THz absorbers, designed and simulated using finite element method (FEM). The first model, in the mid-infrared range (6 to 14 μm), finds applications in thermal imaging, remote sensing, and spectroscopy. The second model, in the far-infrared range (1 to 14 THz), is versatile for spectroscopy, imaging, communication, and sensing. Key contributions include a meta-atom with the smallest footprint, a practical absorber design, and tunability through the graphene layer’s chemical potential. Numerical analysis and simulations demonstrate effective absorption, and sensitivity analysis shows the impact of analyte refractive index and thickness on sensing performance. Model 2, focusing on tunable graphene absorbers, exhibits remarkable absorption characteristics, achieving tunable absorptivity from 3 to 99.5%. In conclusion, this research advances the field of tunable THz absorbers, showcasing potential in diverse applications. The proposed designs, leveraging graphene and innovative configurations, open avenues for efficient and flexible terahertz technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Chaharmahali I, Soltani M, Hoseini M, Biabanifard M (2020) Control of terahertz waves for TE and TM modes using graphene-based metamaterials. Opt Eng 59(4):047101–047101

    Article  ADS  CAS  Google Scholar 

  2. Li W, Xu M, Xu HX, Wang X, Huang W (2022) Metamaterial absorbers: from tunable surface to structural transformation. Adv Mater 34:2202509. https://doi.org/10.1002/adma.202202509

    Article  CAS  Google Scholar 

  3. Agarwal S, Prajapati YK, Kumar A (2021) Advanced materials-based nano-absorbers for thermo-photovoltaic cells. In: Das S, Anveshkumar N, Dutta J, Biswas A (eds) Advances in terahertz technology and its applications. Springer, Singapore. https://doi.org/10.1007/978-981-16-5731-3_11

  4. Korkmaz H, Hasar UC (2021) Wide band metamaterial absorber with lumped element. TIJMET 4:61–66

    Google Scholar 

  5. Wei Z, Jiang Y, Wang J (2023) Frequency magnetically tunable terahertz perfect absorber based on graphene and silica layered dielectric. Crystals 13(4):553. https://doi.org/10.3390/cryst13040553

    Article  CAS  Google Scholar 

  6. Chen C, Chai M, Jin M, He T (2022) Terahertz metamaterial absorbers. Adv Mater Technol 7:2101171. https://doi.org/10.1002/admt.202101171

    Article  CAS  Google Scholar 

  7. Borzooei S, Rezagholizadeh E, Biabanifard M (2020) Graphene disks for frequency control of terahertz waves in broadband applications. J Comput Electron 19:759–772

    Article  CAS  Google Scholar 

  8. Ye Z et al (2023) Multimode tunable terahertz absorber based on a quarter graphene disk structure. Results Phys 48:106420

  9. El-Hageen HM et al (2023) Multilayered gold, MgF2 and tungsten based ultra-wide band infrared absorber for solar cell applications. Mater Chem Phys 301:127680

    Article  CAS  Google Scholar 

  10. Bagmanci M, Karaaslan M, Unal E, Akgol O, Bakir M, Sabah C (2019) Solar energy harvesting with ultra-broadband metamaterial absorber. Int J Mod Phys B 33(8):1950056. https://doi.org/10.1142/S0217979219500565

    Article  ADS  Google Scholar 

  11. Zhu J, Wu C, Ren Y (2021) Broadband terahertz metamaterial absorber based on graphene resonators with perfect absorption. Results Phys 26:104466

  12. Cai Y et al (2021) Tunable and polarization-sensitive graphene-based terahertz absorber with eight absorption bands. J Phys D: Appl Phys 54:195106. https://doi.org/10.1088/1361-6463/abe159

    Article  ADS  CAS  Google Scholar 

  13. Deng G, Chen P, Yang J, Yin Z, Qiu L (2016) Graphene-based tunable polarization sensitive terahertz metamaterial absorber. Opt Commun 380:101–107. https://doi.org/10.1016/j.optcom.2016.05.075

    Article  ADS  CAS  Google Scholar 

  14. Appasani B, Prince P, Ranjan RK et al (2019) A simple multi-band metamaterial absorber with combined polarization sensitive and polarization insensitive characteristics for terahertz applications. Plasmonics 14:737–742. https://doi.org/10.1007/s11468-018-0852-x

    Article  Google Scholar 

  15. Ebrahimi A, Ako RT, Lee WSL, Bhaskaran M, Sriram S, Withayachumnankul W (2020) High-Q terahertz absorber with stable angular response. IEEE Trans Terahertz Sci Technol 10(2)

  16. Biabanifard M, Arsanjani A, Abrishamian MS, Abbott D (2020) Tunable terahertz graphene-based absorber design method based on a circuit model approach. IEEE Access 8:70343–70354

    Article  Google Scholar 

  17. Bai Y, Zhao L, Ju D, Jiang Y, Liu L (2015) Wide-angle, polarization-independent and dual band infrared perfect absorber based on Lshaped metamaterial. Opt Express 23:7. https://doi.org/10.1364/OE.23.008670

    Article  CAS  Google Scholar 

  18. Grigorenko AN, Polini M, Novoselov K (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Article  ADS  CAS  Google Scholar 

  19. Yi Z, Chen J, Cen C, Chen X, Zhou Z, Tang Y, Ye X, Xiao S, Luo W, Wu P (2019) Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region. Micromachines 10:194

    Article  PubMed  PubMed Central  Google Scholar 

  20. Devarapu GC, Foteinopoulou S (2012) Mid-IR near-perfect absorption with a SiC photonic crystal with anglecontrolled polarization selectivity. Opt Express 20(12):13040–13054

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Liu C, Su WQ, Wang FM, Li XL, Yang L, Sun T et al (2019) Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength. J Mod Opt 66(1):1–6

    Article  ADS  CAS  Google Scholar 

  22. Rezagholizadeh E, Biabanifard M, Borzooei S (2020) Analytical design of tunable THz refractive index sensor for TE and TM modes using graphene disks. J Phys D Appl Phys 53(29):295107

    Article  CAS  Google Scholar 

  23. Jabbar MA, Naveed MA, Zubair M, Mehmood MQ, Massoud Y (2023) Wideband polarization insensitive tunable graphene-supported terahertz metamaterial absorber. IEEE Photonics J

  24. Naveed MA, Bilal RMH, Rahim AA, Baqir MA, Ali MM (2021) Polarization-insensitive dual-wideband fractal meta-absorber for terahertz applications. Appl Opt 60(29):9160–9166

    Article  ADS  PubMed  Google Scholar 

  25. Zakir S, Bilal RMH, Naveed MA, Baqir MA, Khan MUA, Ali MM, ... Massoud Y (2022) Polarization-insensitive, broadband, and tunable terahertz absorber using slotted-square graphene meta-rings. IEEE Photonics J 15(1):1–8

    Article  Google Scholar 

  26. Bilal RMH, Naveed MA, Baqir MA, Ali MM, Rahim AA (2020) Design of a wideband terahertz metamaterial absorber based on Pythagorean-tree fractal geometry. Opt Mater Express 10(12):3007–3020

    Article  ADS  CAS  Google Scholar 

  27. Kakenov N, Ergoktas MS, Balci O, Kocabas C (2018) Graphene based terahertz phase modulators. 2D Mater 5:035018. https://doi.org/10.1088/2053-1583/aabfaa

  28. Wentworth SM, Baginski ME, Faircloth DL, Rao SM, Riggs LS (2006) Calculating effective skin depth for thin conductive sheets. In 2006 IEEE Antennas and Propagation Society International Symposium. IEEE, pp 4845–4848

  29. Deng X, Shen Y, Liu B, Song Z, He X, Zhang Q, ... Wei D (2022) Terahertz metamaterial sensor for sensitive detection of citrate salt solutions. Biosensors 12(6):408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Divya J, Selvendran S, Raja AS (2018) Photonic crystal-based optical biosensor: a brief investigation. Laser Phys 28(6):066206

    Article  ADS  Google Scholar 

  31. Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W (2014) Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl Phys Lett 105:171101. https://doi.org/10.1063/1.4895595

    Article  ADS  CAS  Google Scholar 

  32. Saadeldin AS, Hameed MFO, Elkaramany EMA, Obayya SSA (2019) Highly sensitive terahertz metamaterial sensor. In IEEE Sens J 19(18):7993–7999. https://doi.org/10.1109/JSEN.2019.2918214

    Article  ADS  CAS  Google Scholar 

  33. Cong L, Tan S, Yahiaoui R, Yan F, Zhang W, Singh R (2015) Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Appl Phys Lett 106:031107. https://doi.org/10.1063/1.4906109

    Article  ADS  CAS  Google Scholar 

  34. Ma S, Zhang P, Mi X, Zhao H (2023) Highly sensitive terahertz sensor based on graphene metamaterial absorber. Opt Commun 528:129021. https://doi.org/10.1016/j.optcom.2022.129021

  35. Deng X, Shen Y, Liu B, Song Z, He X, Zhang Q, Ling D, Liu D, Wei D (2022) Terahertz metamaterial sensor for sensitive detection of citrate salt solutions. Biosensors 12:408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

Z.O. and M.K wrote the main manuscript text. L.W. and Z.O. made simulations. Z.O. and V.A. write article. All authors reviewed the manuscript.

Corresponding author

Correspondence to Muharrem Karaaslan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özer, Z., Akdoğan, V., Wang, L. et al. Graphene-Based Tunable Metamaterial Absorber for Terahertz Sensing Applications. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02249-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02249-w

Keywords

Navigation