Skip to main content
Log in

A Simple Multi-band Metamaterial Absorber with Combined Polarization Sensitive and Polarization Insensitive Characteristics for Terahertz Applications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper presents a simple multi-band metamaterial absorber for terahertz applications. The unit cell of the proposed structure consists of a single square ring having gaps at the centers on three of its sides. The proposed absorber produces three absorption bands for all polarizations and hence the design can be considered as insensitive to polarization variation. It provides an average absorption of 96.92% for the TE polarization with a peak absorption of 99.44% at 3.87 THz and for the TM polarization, it provides an average absorption of 98.4% with a peak absorption of 99.86% at 3.87 THz. An additional absorption peak is observed for the TE polarization at 1.055 THz that gradually diminishes with the increase in polarization angle and completely vanishes for the TM polarization. Thus, the structure displays a hybrid polarization response with polarization insensitivity in three bands and polarization sensitivity in one band. Parametric analysis has been carried out validating the optimal selection of the design parameters. The simplicity of the design and its combined polarization sensitive and polarization insensitive absorption characteristics can find tremendous applications in the field of terahertz imaging and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shimada Y, Iida H, Kinoshita M (2015) Recent research trends of terahertz measurement standards. IEEE Trans Terahertz Sci Technol 5(6):1166–1172

    Google Scholar 

  2. Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photonics 1(2):97–105

    Article  CAS  Google Scholar 

  3. Siegel PH (2002) Terahertz technology. IEEE Trans Microw Theory Tech 50(3):910–928

    Article  Google Scholar 

  4. Nagatsuma T, Ducournau G, Renaud CC (2016) Advances in terahertz communications accelerated by photonics. Nat Photonics 10(6):371–379

    Article  CAS  Google Scholar 

  5. Correas-Serrano D, Gomez-Diaz JS (2017) “Graphene-based Antennas for Terahertz Systems: A Review“, Invited review paper to FERMAT

  6. Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ (2008) A metamaterial absorber for the terahertz regime: design fabrication and characterization. Opt Express 16:7181–7188

    Article  Google Scholar 

  7. Yoo YJ, Zheng HY, Kim YJ, Rhee JY, Kang JH, Kim KW, Cheong H, Kim YH, Lee YP (2014) Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Appl Phys Lett 105:041902

    Article  Google Scholar 

  8. Rhee JY, Yoo YJ, Kim KW, Kim YJ, Lee YP (2014) Metamaterial-based perfect absorbers. Journal of Electromagnetic Waves and Applications 28(13):1541–1580

    Article  Google Scholar 

  9. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100

  10. Yen TJ et al (2004) Terahertz magnetic response from artificial materials. Science 303:1494–1496

    Article  CAS  Google Scholar 

  11. Singh R, Ai-Naib IAI, Koch M, Zhang W (2010) Asymmetric planar terahertz metamaterials. Opt Express 18:13044–13050

    Article  CAS  Google Scholar 

  12. Tao H, Bingham CM, Pilon D, Fan K, Strikwerda AC, Shrekenhamer D, Padilla WJ, Zhang X, Averitt RD (2010) A dual band terahertz metamaterial absorber. J Phys D 43:225102

    Article  Google Scholar 

  13. Chowdhury DR, Singh R, Reiten M, Chen HT, Taylor AJ, O’Hara JF, Azad AK (2011) A broadband planar terahertz metamaterial with nested structure. Opt Express 19:15817–15823

    Article  Google Scholar 

  14. Ma Y et al (2011) A terahertz polarization insensitive dual band metamaterial absorber. Opt Lett 36:945–947

    Article  Google Scholar 

  15. Shen X et al (2011) Polarization-independent wide-angle triple-band metamaterial absorber. Opt Express 19:9401–9407

    Article  CAS  Google Scholar 

  16. Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Jun Cui T (2012) Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl Phys Lett 101:154102

    Article  Google Scholar 

  17. Cao S, Yu W, Wang T, Shen H, Han X, Xu W, Zhang X (2014) Meta-microwindmill structure with multiple absorption peaks for the detection of ketamine and amphetamine type stimulants in terahertz domain. Opt Mater Exp 4:1876–1884

    Article  CAS  Google Scholar 

  18. Liu S, Zhuge J, Ma S, Chen H, Bao D, He Q, Zhou L, Cui TJ (2015) A bi-layered quad-band metamaterial absorber at terahertz frequencies. J Appl Phys 118:245304

    Article  Google Scholar 

  19. Wang BX, Wang GZ, Sang T, Wang LL (2017) Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure. Sci Rep 7:41373

    Article  CAS  Google Scholar 

  20. Wang BX (2017) Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE Journal of Selected Topics in Quantum Electronics 23(4):1–7

    Google Scholar 

  21. Wang BX, Wang GZ (2016) Quad-band terahertz absorber based on a simple design of metamaterial resonator. IEEE Photonics Journal 8(6):1–8

    Google Scholar 

  22. Hu D, Wang H y, Zhu Q f (2016) Design of six-band terahertz perfect absorber using a simple U-shaped closed-ring resonator. IEEE Photonics Journal 8(2):1–8

    Article  Google Scholar 

  23. Wang BX, Wang GZ, Sang T (2016) Simple design of novel triple band terahertz metamaterial absorber for sensing application. J Phys D Appl Phys 49:165307–165313

    Article  Google Scholar 

  24. Meng HY, Wang LL, Zhai X, Liu GD, Xia SX (2018) A simple design of a multi-band terahertz metamaterial absorber based on periodic square metallic layer with T-shaped gap. Plasmonics 13(1):269–274

    Article  CAS  Google Scholar 

  25. Pelluri R, Appasani B (2017) Genetic algorithm optimized X-band absorber using metamaterials. Prog Electromagn Res 69:59–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhargav Appasani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appasani, B., Prince, P., Ranjan, R.K. et al. A Simple Multi-band Metamaterial Absorber with Combined Polarization Sensitive and Polarization Insensitive Characteristics for Terahertz Applications. Plasmonics 14, 737–742 (2019). https://doi.org/10.1007/s11468-018-0852-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0852-x

Keywords

Navigation