Skip to main content
Log in

Performance Analysis of Ag-TiO\(_2\)-Coated Hexagonal-Shaped Photonic Crystal Fiber Plasmonic Sensor and Ethanol’s Low Water Content Detection

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper proposed a photonic crystal fiber (PCF) sensor to detect low water content in ethanol. An Ag-TiO\(_2\) layer is used to achieve high sensitivity of this surface plasmon resonance (SPR)-based sensor. Moreover, TiO\(_2\) layer reduces chemical instability of silver and enhances SPR effect. This paper carried out numerical analysis of sensor using finite element method (FEM). For evaluating effectiveness of a sensor to detect a target analyte, its confinement loss, sensitivity to changes in amplitude and wavelength can be measured by tuning some impactful parameters like airhole diameter, thickness of silver (Ag) and titanium dioxide (TiO\(_2\)). The maximum amplitude sensitivity for detecting ethanol is 963 \(RIU^{-1}\) and maximum spectral sensitivity is 12,000 nm/RIU. The sensor can detect 100% pure ethanol with respect to pure water. The linearity of the sensors has also been evaluated between refractive index 1.32–1.36, and the regression coefficient (\(R^2\)) for this sensor is 0.99961. The fabrication process of the proposed sensor has been discussed elaborately. This under consideration biosensor shows promising feature for organic and biological compound detection due to its stability and excellent sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Ng WL, Rifat AA, Wong WR, Tee DC, Mahamd Adikan FR (2017) Enhancement of evanescent field exposure in a photonic crystal fibre with interstitial holes. J Mod Opt 64(15):1544–1549

    Article  CAS  ADS  Google Scholar 

  2. Mostufa S, Paul AK, Chakrabarti K (2021) Detection of hemoglobin in blood and urine glucose level samples using a graphene-coated spr based biosensor. OSA Continuum 4(8):2164–2176

    Article  CAS  Google Scholar 

  3. Almawgani AH, Daher MG, Taya SA, Olaimat MM, Alhawari AR, Colak I (2022) Detection of blood plasma concentration theoretically using spr-based biosensor employing black phosphor layers and different metals. Plasmonics 17(4):1751–1764

    Article  CAS  Google Scholar 

  4. Kumar V, Raghuwanshi SK, Kumar S (2022) Recent advances in carbon nanomaterials based spr sensor for biomolecules and gas detection-a review. IEEE Sens J

  5. Ishtiak KM, Imam S-A, Khosru QD (2022) Batio3-blue phosphorus/ws2 hybrid structure-based surface plasmon resonance biosensor with enhanced sensor performance for rapid bacterial detection. Results Eng 16:100698

    Article  CAS  Google Scholar 

  6. Mostufa S, Akib TBA, Rana MM, Islam MR (2022) Highly sensitive tio2/au/graphene layer-based surface plasmon resonance biosensor for cancer detection. Biosensors 12(8):603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akib TBA, Mou SF, Rahman MM, Rana MM, Islam MR, Mehedi IM, Mahmud MP, Kouzani AZ (2021) Design and numerical analysis of a graphene-coated spr biosensor for rapid detection of the novel coronavirus. Sensors 21(10):3491

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  8. Momota MR, Hasan MR (2018) Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt Mater 76:287–294

    Article  CAS  ADS  Google Scholar 

  9. Zhao Y-Y, Ren X-L, Zheng M-L, Jin F, Liu J, Dong X-Z, Zhao Z-S, Duan X-M (2021) Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes. Opto-Electron Adv 4(12):200101–1

    Article  CAS  Google Scholar 

  10. Kanmani R, Zainuddin NAM, Rusdi MFM, Harun SW, Ahmed K, Amiri IS, Zakaria R (2019) Effects of tio2 on the performance of silver coated on side-polished optical fiber for alcohol sensing applications. Opt Fiber Technol 50:183–187

    Article  CAS  ADS  Google Scholar 

  11. Dash JN, Jha R (2015) On the performance of graphene-based d-shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics 10:1123–1131

    Article  CAS  Google Scholar 

  12. Wang M, Wang P, Zhang J, Hou H, Li C, Jin Y (2018) Pd/ag nanosheet as a plasmonic sensing platform for sensitive assessment of hydrogen evolution reaction in colloid solutions. Nano Res 11:2093–2103

    Article  CAS  Google Scholar 

  13. Akowuah EK, Gorman T, Ademgil H, Haxha S, Robinson GK, Oliver JV (2012) Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J Quantum Electron 48(11):1403–1410

    Article  CAS  ADS  Google Scholar 

  14. Beauchaine J, Briggs J (2007) Measurement of water in ethanol using encoded photometric nir spectroscopy. Spectroscopy 22(6):40

    CAS  Google Scholar 

  15. Srivastava SK, Verma R, Gupta BD (2011) Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol. Sens Actuators B Chem 153(1):194–198

    Article  CAS  Google Scholar 

  16. Mendes LS, Oliveira FC, Suarez PA, Rubim JC (2003) Determination of ethanol in fuel ethanol and beverages by fourier transform (ft)-near infrared and ft-raman spectrometries. Anal Chim Acta 493(2):219–231

    Article  CAS  Google Scholar 

  17. Islam MS, Sultana J, Dinovitser A, Ahmed K, Islam MR, Faisal M, Ng BW-H, Abbott D (2017) A novel zeonex based photonic sensor for alcohol detection in beverages. In: 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), p 114–118. IEEE

  18. Bing P, Sui J, Wu G, Guo X, Li Z, Tan L, Yao J (2020) Analysis of dual-channel simultaneous detection of photonic crystal fiber sensors. Plasmonics 15:1071–1076

    Article  CAS  Google Scholar 

  19. Gangwar RK, Singh VK (2017) Highly sensitive surface plasmon resonance based d-shaped photonic crystal fiber refractive index sensor. Plasmonics 12:1367–1372

    Article  CAS  Google Scholar 

  20. Dash JN, Jha R (2014) Spr biosensor based on polymer pcf coated with conducting metal oxide. IEEE Photon Technol Lett 26(6):595–598

    Article  CAS  ADS  Google Scholar 

  21. An G, Hao X, Li S, Yan X, Zhang X (2017) D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance. Appl Opt 56(24):6988–6992

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Moore LA, Smith CM (2022) Fused silica as an optical material. Opt Mater Express 12(8):3043–3059

    Article  CAS  ADS  Google Scholar 

  23. Otupiri R, Akowuah EK, Haxha S, Ademgil H, AbdelMalek F, Aggoun A (2014) A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J 6(4):1–11

    Article  Google Scholar 

  24. Ebron VH, Yang Z, Seyer DJ, Kozlov ME, Oh J, Xie H, Razal J, Hall LJ, Ferraris JP, MacDiarmid AG et al (2006) Fuel-powered artificial muscles. Science 311(5767):1580–1583

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Sehmi H, Langbein W, Muljarov E (2017) Optimizing the drude-lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper. Phys Rev B 95(11):115444

    Article  ADS  Google Scholar 

  26. Wang T, Zhang M, Liu K, Jiang J, Zhao Y, Ma J, Liu T (2019) The effect of the tio2 film on the performance of the optical fiber spr sensor. Optics Commun 448:93–97

    Article  CAS  ADS  Google Scholar 

  27. Chakma S, Khalek MA, Paul BK, Ahmed K, Hasan MR, Bahar AN (2018) Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis. Sens Bio-Sens Res 18:7–12

    Article  Google Scholar 

  28. Akowuah EK, Gorman T, Ademgil H, Haxha S, Robinson GK, Oliver JV (2012) Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J Quantum Electron 48(11):1403–1410

    Article  CAS  ADS  Google Scholar 

  29. Haider F, Aoni RA, Ahmed R, Chew WJ, Mahdiraji GA (2020) Alphabetic-core assisted microstructure fiber based plasmonic biosensor. Plasmonics 15:1949–1958

    Article  CAS  Google Scholar 

  30. Islam MS, Cordeiro CM, Sultana J, Aoni RA, Feng S, Ahmed R, Dorraki M, Dinovitser A, Ng BW-H, Abbott D (2019) A hi-bi ultra-sensitive surface plasmon resonance fiber sensor. IEEE Access 7:79085–79094

    Article  Google Scholar 

  31. Scott TA Jr (1946) Refractive index of ethanol-water mixtures and density and refractive index of ethanol-water-ethyl ether mixtures. J Phys Chem 50(5):406–412

    Article  CAS  PubMed  Google Scholar 

  32. Daher MG, Taya SA, Almawgani AH, Hindi AT, Colak I, Patel SK (2023) Optical biosensor based on surface plasmon resonance nanostructure for the detection of mycobacterium tuberculosis bacteria with ultra-high efficiency and detection accuracy. Plasmonics 18(6):2195–2204

    Article  CAS  Google Scholar 

  33. Kumar V, Raghuwanshi SK, Kumar S (2023) Nanomaterial-based surface plasmon resonance sensing chip for detection of skin and breast cancer. Plasmonics 1–12

  34. Islam MR, Iftekher A, Marshad I, Rity NF, Ahmad RU (2023) Analysis of a dual peak dual plasmonic layered lspr-pcf sensor-double peak shift sensitivity approach. Optik 280:170793

    Article  CAS  ADS  Google Scholar 

  35. Islam MR, Hasan KR, Khan MMI, Iftekher ANM, Mehjabin F, Nayen MJ, Chowdhury JA, Islam SB, Islam M (2022) Design of a dual cluster and dual array-based pcf-spr biosensor with ultra-high ws and fom. Plasmonics 17(3):1171–1182

    Article  CAS  Google Scholar 

  36. Gupta A, Singh T, Singh RK, Tiwari A (2023) Numerical analysis of coronavirus detection using photonic crystal fibre-based spr sensor. Plasmonics 18(2):577–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gupta A, Gadia R, Singh A, Singh RK, Tiwari A (2021) Design analysis of multisample single-analyte surface plasmon resonance biosensor based on d-shape photonic crystal fibers. Plasmonics 1–9

  38. Jain S, Choudhary K, Kumar S (2022) Photonic crystal fiber-based spr sensor for broad range of refractive index sensing applications. Opt Fiber Technol 73:103030

    Article  CAS  Google Scholar 

  39. Islam N, Arif MFH, Yousuf MA, Asaduzzaman S (2023) Highly sensitive open channel based pcf-spr sensor for analyte refractive index sensing. Results Phys 46:106266

    Article  Google Scholar 

  40. Meng F, Wang H, Fang D (2022) Research on d-shape open-loop pcf temperature refractive index sensor based on spr effect. IEEE Photonics J 14(3):1–5

    Article  Google Scholar 

  41. Guo X, Wang Y, Sang T, Yang G, Yao Q (2023) Spr sensor based on a concave photonic crystal fiber structure with mos2/au layers. Materials 16(16):5523

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Divya J, Selvendran S, Raja AS, Chitra K (2024) Silver-tio2 coated d-shaped photonic crystal fiber based spr sensor for ultrasensitive refractive index detection: design and fem analysis. Phys Scr 99(2):025505

    Article  ADS  Google Scholar 

  43. Sharma V, Kumar A, Saharan S, Semwal S (2023) Graphene/au/mip-coated d-shaped optical fiber-based spr sensor for ethanol detection. Plasmonics 18(5):1639–1649

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation, W.E. and F.K.N.; writing—review and editing, W.E. and F.K.N.; supervision, M.F.N. All authors have read and approved the published version of the manuscript. Conceptualization, W.E. and M.F.N.; methodology, W.E.; software, W.E. and A.C.; validation, F.K.N., M.F.N., and R.R.M. Every author looked over the work.

Corresponding author

Correspondence to Wahiduzzaman Emon.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emon, W., Chaki, A., Nahian, F.K. et al. Performance Analysis of Ag-TiO\(_2\)-Coated Hexagonal-Shaped Photonic Crystal Fiber Plasmonic Sensor and Ethanol’s Low Water Content Detection. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02248-x

Keywords

Navigation