Skip to main content
Log in

Slow Light Realization Based on Plasmon-Induced Transparency in Γ-Shaped Rectangular Resonator Structures

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, Γ-shaped rectangular resonators, which are created in a metal insulator metal (MIM) structure, have been studied analytically and numerically. The metal is silver and rectangular resonators are filled by Si and the peak of transparency profile is tuned in the communication band with proper geometrical parameters. By employing 2-D finite difference time domain method (FDTD), simulations show a plasmonic induced transparency (PIT) window in the transmission diagram. The PIT is created by instructive and destructive interference between bright and dark resonator modes. The presented structure demonstrates tunable transparency window by variation of symmetry parameter, s. The maximum group velocity is obtained 0.1 ps in communication band corresponded to 30 μm traveling of light in the vacuum which is comparable to previous articles. The proposed structure may have potential applications in optical memory and delay blocks in designing integrated optical circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the results are clearly mentioned in the article.

References

  1. Atwater HA (2007) The promise of plasmonics. Sci Am 296(4):56–63

    Article  CAS  PubMed  Google Scholar 

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics nature. 424(6950):824–830

    CAS  PubMed  Google Scholar 

  3. Raether H (2006) Surface plasmons on smooth surfaces. Surface plasmons on smooth and rough surfaces and on gratings. 19:4–39

    Google Scholar 

  4. Kurokawa Y, Miyazaki HT (2007) Metal-insulator-metal plasmon nanocavities: analysis of optical properties. Phys Rev B 75(3):035411

    Article  Google Scholar 

  5. Kamada S, Okamoto T, El-Zohary SE, Haraguchi M (2016) Design optimization and fabrication of Mach-Zehnder interferometer based on MIM plasmonic waveguides. Opt Express 24(15):16224–16231

    Article  CAS  PubMed  Google Scholar 

  6. Nurmohammadi T, Abbasian K, Yadipour R (2018) Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator. Opt Commun 1(410):142–147

    Article  Google Scholar 

  7. Pu M, Yao N, Hu C, Xin X, Zhao Z, Wang C, Luo X (2010) Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide. Opt Express 18(20):21030–21037

    Article  CAS  PubMed  Google Scholar 

  8. Nurmohammadi T, Abbasian K, Yadipour R (2017) A proposal for a demultiplexer based on plasmonic metal–insulator–metal waveguide-coupled ring resonator operating in near-infrared spectrum. Optik 1(142):550–556

    Article  Google Scholar 

  9. Kou Y, Chen X (2011) Multimode interference demultiplexers and splitters in metal-insulator-metal waveguides. Opt Express 19(7):6042–6047

    Article  PubMed  Google Scholar 

  10. Nurmohammadi T, Abbasian K, Yadipour R (2018) Numerical study of dumbbell-shaped gold nanoparticles using in plasmonic waveguides in near infra-red spectrums. Opt Quant Electron 50:1–3

    Article  CAS  Google Scholar 

  11. Babicheva VE, Lavrinenko AV (2013) A plasmonic modulator based on metal-insulator-metal waveguide with barium titanate core. Photonics Lett Poland 5(2):57–59

    Article  CAS  Google Scholar 

  12. Khatooni HS, Abbasian K, Nurmohammadi T (2020) A tunable band-stop plasmonic waveguide filter and switch designing with triangular resonator based on Kerr non-linearity. Optik 1(224):165708

    Article  Google Scholar 

  13. Chen L, Lu P, Tian M, Liu D, Zhang J (2013) A subwavelength MIM waveguide filter with single-cavity and multi-cavity structures. Optik-International Journal for Light and Electron Optics 124(18):3701–3704

    Article  CAS  Google Scholar 

  14. Muñoz P, Yong YS, Dijkstra M, Segerink FB, García-Blanco SM (2019) Double metal layer lift-off process for the robust fabrication of plasmonic nano-antenna arrays on dielectric substrates using e-beam lithography. Opt Mater Express 9(5):2046–2056

    Article  Google Scholar 

  15. Zhu B, Chen M, Zhu Q, Zhou G, Abdelazim NM, Zhou W, Kershaw SV, Rogach AL, Zhao N, Tsang HK (2019) Integrated plasmonic infrared photodetector based on colloidal HgTe quantum dots. Adv Mater Technol 4(10):1900354

    Article  CAS  Google Scholar 

  16. Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q (2012) All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12(11):5784–5790

    Article  CAS  PubMed  Google Scholar 

  17. Peters RF, Gutierrez-Rivera L, Dew SK, Stepanova M (2015) Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates. JoVE (Journal of Visualized Experiments) 97:e52712

    Google Scholar 

  18. Tuniz A (2021) Nanoscale nonlinear plasmonics in photonic waveguides and circuits. La Rivista del Nuovo Cimento 44(4):193–249

    Article  CAS  Google Scholar 

  19. Nielsen MP, Shi X, Dichtl P, Maier SA, Oulton RF (2017) Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing. Science 358(6367):1179–1181

    Article  CAS  PubMed  Google Scholar 

  20. Gersen H, Karle TJ, Engelen RJ, Bogaerts W, Korterik JP, Van Hulst NF, Krauss TF, Kuipers L (2005) Real-space observation of ultraslow light in photonic crystal waveguides. Phys Rev Lett 94(7):073903

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Hayasaka K, Kasai K (2005) Conditional transfer of quantum correlation in the intensity of twin beams. Phys Rev A 71(6):062341

    Article  Google Scholar 

  22. Harris SE, Hau LV (1999) Nonlinear optics at low light levels. Phys Rev Lett 82(23):4611

    Article  CAS  Google Scholar 

  23. Piao X, Yu S, Park N (2012) Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt Express 20(17):18994–18999

    Article  PubMed  Google Scholar 

  24. Wang J, Niu Y, Liu D, Hu ZD, Sang T, Gao S (2018) Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system. Plasmonics 13:609–616

    Article  Google Scholar 

  25. Han X, Wang T, Li X, Liu B, He Y, Tang J (2015) Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system. J Phys D Appl Phys 48(23):235102

    Article  Google Scholar 

  26. Wang G, Zhang W, Gong Y, Liang J (2014) Tunable slow light based on plasmon-induced transparency in dual-stub-coupled waveguide. IEEE Photonics Technol Lett 27(1):89–92

    Article  CAS  Google Scholar 

  27. Zhang Z, Yang J, He X, Han Y, Zhang J, Huang J, Chen D, Xu S (2018) Active enhancement of slow light based on plasmon-induced transparency with gain materials. Materials 11(6):941

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tian J, Li J (2020) Investigation on plasmon induced transparency and its application in an MIM type compound plasmonic waveguide. Progress In Electromagnetics Research C 98:199–212

    Article  CAS  Google Scholar 

  29. Chen CY, Un IW, Tai NH, Yen TJ (2009) Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Opt Express 17(17):15372–15380

    Article  CAS  PubMed  Google Scholar 

  30. Chen Z, Dai L, Jiang C (2011) Polarization-independent plasmon-induced transparency for plasmonic sensing. J Phys D Appl Phys 44(32):325106

    Article  Google Scholar 

  31. Zhan S, Li H, Cao G, He Z, Li B, Xu H (2014) Theoretical analysis of plasmon-induced transparency in ring-resonators coupled channel drop filter systems. Plasmonics 9:1431–1437

    Article  CAS  Google Scholar 

  32. Xiao S, Wang T, Liu T, Yan X, Li Z, Xu C (2018) Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon 1(126):271–278

    Article  Google Scholar 

  33. Yan X, Wang T, Xiao S, Liu T, Hou H, Cheng L, Jiang X (2017) Dynamically controllable plasmon induced transparency based on hybrid metal-graphene metamaterials. Sci Rep 7(1):13917

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nurmohammadi T, Abbasian K, Mashayekhi MZ (2022) Graphene-based tunable plasmon-induced transparency utilizing circular and two rectangular gold rings in the near-infrared spectrum. Mater Sci Semicond Process 15(144):106601

    Article  Google Scholar 

  35. Han Z, Bozhevolnyi SI (2011) Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt Express 19(4):3251–3257

    Article  CAS  PubMed  Google Scholar 

  36. Zhan S, Li H, Cao G, He Z, Li B, Yang H (2014) Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. J Phys D Appl Phys 47(20):205101

    Article  Google Scholar 

  37. Lu H, Liu X, Mao D (2012) Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys Rev A 85(5):053803

    Article  Google Scholar 

  38. Kekatpure RD, Barnard ES, Cai W, Brongersma ML (2010) Phase-coupled plasmon-induced transparency. Phys Rev Lett 104(24):243902

    Article  PubMed  Google Scholar 

  39. Wang T, Zhang Y, Hong Z, Han Z (2014) Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators. Opt Express 22(18):21529–21534

    Article  PubMed  Google Scholar 

  40. Zhang Z, Zhang L, Li H, Chen H (2014) Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity. Appl Phys Lett 104(23)

  41. Guo Y, Yan L, Pan W, Luo B, Wen K, Guo Z, Luo X (2012) Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators. Opt Express 20(22):24348–24355

    Article  PubMed  Google Scholar 

  42. Pav M, Pooretemad S, Granpayeh N (2023) Ultra-fast all-optical plasmonic dual-band nonlinear off–on and two-port switches. Plasmonics 4:1–1

    Google Scholar 

  43. Yang HU, D’Archangel J, Sundheimer ML, Tucker E, Boreman GD, Raschke MB (2015) Optical dielectric function of silver. Phys Rev B 91(23):235137

    Article  Google Scholar 

  44. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370

    Article  CAS  Google Scholar 

  45. Maier SA (2007) Plasmonics: fundamentals and applications. New York: springer 

  46. Chen ZQ, Qi JW, Chen J, Li YD, Hao ZQ, Lu WQ, Xu JJ, Sun Q (2013) Fano resonance based on multimode interference in symmetric plasmonic structures and its applications in plasmonic nanosensors. Chin Phys Lett 30(5):057301

    Article  Google Scholar 

  47. Zhao X, Zhang Z, Yan S (2017) Tunable Fano resonance in asymmetric MIM waveguide structure. Sensors 17(7):1494

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hu F, Yi H, Zhou Z (2011) Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Opt Express 19(6):4848–4855

    Article  PubMed  Google Scholar 

  49. Xiao B, Tong S, Fyffe A, Shi Z (2020) Tunable electromagnetically induced transparency based on graphene metamaterials. Opt Express 28(3):4048–4057

    Article  PubMed  Google Scholar 

  50. Linder J, Halterman K (2016) Dynamical tuning between nearly perfect reflection, absorption, and transmission of light via graphene/dielectric structures. Sci Rep 6(1):1

    Article  Google Scholar 

  51. Xie Y, Chai J, Ye Y, Song T, Liu B, Zhang L, Zhu Y, Liu Y (2021) A tunable slow light device with multiple channels based on plasmon-induced transparency. Plasmonics 16:1809–1816

    Article  CAS  Google Scholar 

  52. Wen K, Hu Y, Chen L, Zhou J, He M, Lei L, Meng Z (2016) Plasmonic-induced absorption and transparency based on a compact ring-groove joint MIM waveguide structure. IEEE Photonics J 8(5):1–8

    Google Scholar 

  53. Fan H, Tian J, Yang R (2023) Study of Fano resonance and its application in MIM waveguide using a k-shaped resonator. Opt Quant Electron 55(1):75

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study’s conception and design. Samira Taghizadehasl Foroughi and Tofiq Nurmohammadi wrote the first draft of the paper and did the simulations. Reza Yadipour and Saeed Golmohammadi supervised the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Tofiq Nurmohammadi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foroughi, S.T., Yadipour, R., Golmohammadi, S. et al. Slow Light Realization Based on Plasmon-Induced Transparency in Γ-Shaped Rectangular Resonator Structures. Plasmonics 19, 785–791 (2024). https://doi.org/10.1007/s11468-023-02032-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02032-3

Keywords

Navigation