Skip to main content
Log in

Numerical study of dumbbell-shaped gold nanoparticles using in plasmonic waveguides in near infra-red spectrums

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we investigated plasmonic waveguides in near infra-red spectrum using dumbbell-shaped gold nanoparticles. It is possible to shift localized surface plasmon resonance (LSPR) to the desired wavelength with proper geometrical properties. 3-D FDTD simulations are used to determine the set of geometrical parameters of nanoparticles to obtain LSPR at 1310 and 1550 nm. Employing different configuration of nanoparticles chains, we not only can design waveguides with better optical characteristics but also achieve the demultiplexing function in V-form arrays. The proposed nanoparticles show sharp resonance peak, 168 FWHM bandwidth for λ = 1310, and 204 nm for λ = 1550 nm. Linear chains of particles can transport the electromagnetic energy at λ = 1310 nm, with transmission losses γL = 3 dB/452 and γT = 3 dB/446 nm and group velocities vgL = 0.336C0 and vgT = 0.256C0 for longitudinal and transverse polarizations, respectively, where C0 is the speed of light in the vacuum. At λ = 1550 nm, γL = 3 dB/490, γT = 3 dB/604, vgL = 0.382C0 and vgT = 0.260C0. Moreover, we attained 8.13 as minimum ratio of averaged electric field intensity and 36.8 as minimum ratio of averaged Poynting vector as a function of position between two ports in demultiplexing function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahmadivand, A., Golmohammadi, S.: Comprehensive investigation of noble metal nanoparticles shape, size and material on the optical response of optimal plasmonic Y-splitter waveguides. Opt. Commun. 310, 1–11 (2014)

    Article  ADS  Google Scholar 

  • Aizpurua, J., Hanarp, P., Sutherland, D.S., Käll, M., Bryant, G.W., De Abajo, F.G.: Optical properties of gold nanorings. Phys. Rev. Lett. 90(5), 057401 (2003)

    Article  ADS  Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Article  ADS  Google Scholar 

  • Benz, A., Campione, S., Klem, J.F., Sinclair, M.B., Brener, I.: Control of strong light–matter coupling using the capacitance of metamaterial nanocavities. Nano Lett. 15(3), 1959–1966 (2015)

    Article  ADS  Google Scholar 

  • Brongersma, M.L., Hartman, J.W., Atwater, H.A.: Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys. Rev. B 62(24), R16356–R16359 (2000)

    Article  ADS  Google Scholar 

  • Gedney, S.D.: Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Synth. Lect. Comput. Electromagn. 6(1), 1–250 (2011)

    Article  ADS  MATH  Google Scholar 

  • Gong, C., Leite, M.S.: Noble metal alloys for plasmonics. ACS Photonics 3(4), 507–513 (2016)

    Article  Google Scholar 

  • Jackson, J.D.: Electrodynamics. Wiley-VCH Verlag GmbH & Co. KGaA (1975)

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)

    Article  ADS  Google Scholar 

  • Jung, K.Y., Teixeira, F.L., Reano, R.M.: Au/SiO2 nanoring plasmon waveguides at optical communication band. J. Lightwave Technol. 25(9), 2757–2765 (2007)

    Article  ADS  Google Scholar 

  • Liu, L., Han, Z., He, S.: Novel surface plasmon waveguide for high integration. Opt. Express 13(17), 6645–6650 (2005)

    Article  ADS  Google Scholar 

  • Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer (2007)

  • Maier, S.A., Brongersma, M.L., Kik, P.G., Meltzer, S., Requicha, A.A., Atwater, H.A.: Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13(19), 1501–1505 (2001)

    Article  Google Scholar 

  • Maier, S.A., Kik, P.G., Atwater, H.A.: Optical pulse propagation in metal nanoparticle chain waveguides. Phys. Rev. B 67(20), 205402 (2003)

    Article  ADS  Google Scholar 

  • Mulvaney, P.: Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3), 788–800 (1996)

    Article  Google Scholar 

  • Noginov, M.A., Zhu, G., Bahoura, M., Adegoke, J., Small, C., Ritzo, B.A., Drachev, V.P., Shalaev, V.M.: The effect of gain and absorption on surface plasmons in metal nanoparticles. Appl. Phys. B 86(3), 455–460 (2007)

    Article  ADS  Google Scholar 

  • Quinten, M., Leitner, A., Krenn, J.R., Aussenegg, F.R.: Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23(17), 1331–1333 (1998)

    Article  ADS  Google Scholar 

  • Raether, H.: Surface plasmons on gratings. In: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, pp. 91–116. Springer, Berlin (1988)

    Book  Google Scholar 

  • Rayford, C.E., Schatz, G., Shuford, K.: Optical properties of gold nanospheres. Nanoscape 2(1), 27–33 (2005)

    Google Scholar 

  • Saleh, B.E., Teich, M.C., Saleh, B.E.: Fundamentals of Photonics, vol. 22. Wiley, New York (1991)

    Book  Google Scholar 

  • Stoleru, V.G., Towe, E.: Optical properties of nanometer-sized gold spheres and rods embedded in anodic alumina matrices. Appl. Phys. Lett. 85(22), 5152–5154 (2004)

    Article  ADS  Google Scholar 

  • Sullivan, D.M.: Electromagnetic Simulation Using the FDTD Method. Wiley (2013)

  • Sweatlock, L.A., Maier, S.A., Atwater, H.A., Penninkhof, J.J., Polman, A.: Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Phys. Rev. B 71(23), 235408 (2005)

    Article  ADS  Google Scholar 

  • Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech house (2005)

  • Tsai, C.Y., Lin, J.W., Wu, C.Y., Lin, P.T., Lu, T.W., Lee, P.T.: Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode. Nano Lett. 12(3), 1648–1654 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Abbasian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurmohammadi, T., Abbasian, K. & Yadipour, R. Numerical study of dumbbell-shaped gold nanoparticles using in plasmonic waveguides in near infra-red spectrums. Opt Quant Electron 50, 188 (2018). https://doi.org/10.1007/s11082-018-1457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1457-5

Keywords

Navigation