Skip to main content
Log in

Vanadium Dichalcogenides Triangular Nanoflakes: A Comparative Study of Optical and Electronic Properties

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, we comparatively studied the electronic and optical properties of triangular-shaped nanoflakes of VX\(_2\) with varying flake sizes and compositions. We calculated the electronic properties using the density functional theory (DFT) while employing the time-dependent density functional theory (TD-DFT) to explore the optical properties of nanoflakes. The density of states (DOS) of VX\(_2\) triangular nanoflakes showed the existence of localized metallic states, primarily originating from the presence of edge atoms in the flake. The optical spectra of VX\(_2\) triangular nanoflakes revealed that the discrete peaks at low energy levels show broadening as flake size increases while splitting in resonance peaks upon changing the composition of the nanoflake. To gain insights into the nature of photoabsorption peaks, we analyzed the induced density and transition contribution map (TCM), which revealed the presence of both single-particle excitations and collective excitations. The collective excitations are known as plasmons which arise from the localized metallic edge states of the nanoflakes. This study sheds light on how nanoflakes’ electronic and optical characteristics depend heavily on their shape, size, and composition. Future experiments are necessary to validate these theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

The datasets and materials analyzed during the current study are publicly available at the Computational 2D Materials Database (C2DB).

References

  1. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H\(_2\) evolution from MoS\(_2\) nanocatalysts. Science 317(5834):100–102

  2. Newaz AKM, Prasai D, Ziegler JI, Caudel D, Robinson S, Haglund RF Jr, Bolotin KI (2013) Electrical control of optical properties of monolayer MoS2. Solid State Commun 155:49–52

    Article  CAS  Google Scholar 

  3. Ryou J, Kim Y-S, KC S, Cho K (2016) Monolayer MoS2 bandgap modulation by dielectric environments and tunable bandgap transistors. Sci Rep 6:29184

  4. Chu T, Ilatikhameneh H, Klimeck G, Rahman R, Chen Z (2015) Electrically tunable bandgaps in bilayer MoS2. Nano Lett 15(12):8000–8007

    Article  CAS  PubMed  Google Scholar 

  5. Yang L, Cui X, Zhang J, Wang K, Shen M, Zeng S, Dayeh SA, Feng L, Xiang B (2014) Lattice strain effects on the optical properties of MoS2 nanosheets. Sci Rep 4:5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kravets VG, Wu F, Auton GH, Yu T, Imaizumi S, Grigorenko AN (2019) Measurements of electrically tunable refractive index of MoS2 monolayer and its usage in optical modulators. NPJ 2D Mater Appl 3:36

  7. Petrić MM, Kremser M, Barbone M, Nolinder A, Lyamkina A, Stier AV, Kaniber M, Müller K, Finley JJ (2022) Tuning the optical properties of a MoSe2 monolayer using nanoscale plasmonic antennas. Nano Lett 22(2):561–569

    Article  PubMed  Google Scholar 

  8. Xu H, Liu S, Ding Z, Tan SJR, Yam KM, Bao Y, Nai CT, Ng M-F, Lu J, Zhang C, Loh KP (2016) Oscillating edge states in one-dimensional MoS2 nanowires. 7:12904

  9. Li Y, Zhou Z, Zhang S, Chen Z (2008) MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. J Am Chem Soc 130(49):16739–16744

    Article  CAS  PubMed  Google Scholar 

  10. Li B, Jiang L, Li X, Ran P, Zuo P, Wang A, Qu L, Zhao Y, Cheng Z, Lu Y (2017) Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water. Sci Rep 7:11182

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cao D, Shen T, Liang P, Chen X, Shu H (2015) Role of chemical potential in flake shape and edge properties of monolayer MoS2. J Phys Chem C 119(8):4294–4301

    Article  CAS  Google Scholar 

  12. Wang Y, Ou JZ, Chrimes AF, Carey BJ, Daeneke T, Alsaif MMYA, Mortazavi M, Zhuiykov S, Medhekar N, Bhaskaran M, Friend JR, Strano MS, Kalantar-Zadeh K (2015) Plasmon resonances of highly doped two-dimensional MoS2. Nano Lett 15(2):883–890

    Article  CAS  PubMed  Google Scholar 

  13. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    Article  CAS  Google Scholar 

  14. Bala A, Sen A, Kim Y-H, Kim Y-M, Gandla S, Park H, Kim S (2022) Large-area MoS2 nanosheets with triangular nanopore arrays as active and robust electrocatalysts for hydrogen evolution. J Phys Chem C 126(23):9696–9703

    Article  CAS  Google Scholar 

  15. Yan J, Yuan Z, Gao S (2007) End and central plasmon resonances in linear atomic chains. Phys Rev Lett 98:216602

    Article  PubMed  Google Scholar 

  16. Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z (2017) Plasmonics of 2D nanomaterials: properties and applications. Adv Sci 4(8):1600430

    Article  Google Scholar 

  17. Amendola V, Pilot R, Frasconi M, Maragó OM, Iatì MA (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter 29

  18. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586

    Article  CAS  PubMed  Google Scholar 

  19. Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41

    Article  PubMed  Google Scholar 

  20. Lequeux M, Mele D, Venugopalan P, Gillibert R, Boujday S, Knoll W, Dostalek J, Lamy de la Chapelle M (2020) Plasmonic properties of gold nanostructures on gold film. Plasmonics 15:1653–1660

  21. Campos A, Troc N, Cottancin E, Pellarin M, Weissker H-C, Lermé J, Kociak M, Hillenkamp M (2019) Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments. Nat Phys 15:275–280

    Article  CAS  Google Scholar 

  22. Langhammer C, Yuan Z, Zorić I, Kasemo B (2006) Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett 6(4):833–838

    Article  CAS  PubMed  Google Scholar 

  23. Sousa-Castillo A, Comesaña-Hermo M, Rodríguez-González B, Pérez-Lorenzo M, Wang Z, Kong X-T, Govorov AO, Correa-Duarte MA (2016) Boosting hot electron-driven photocatalysis through anisotropic plasmonic nanoparticles with hot spots in Au-TiO2 nanoarchitectures. J Phys Chem C 120(21):11690–11699

    Article  CAS  Google Scholar 

  24. Weissker H-C, Mottet C (2011) Optical properties of pure and core-shell noble-metal nanoclusters from TDDFT: the influence of the atomic structure. Phys Rev B 84:165443

    Article  Google Scholar 

  25. Müller MM, Perdana N, Rockstuhl C, Holzer C (2022) Modeling and measuring plasmonic excitations in hollow spherical gold nanoparticles. J Chem Phys 156(9):094103

    Article  PubMed  Google Scholar 

  26. Song C, Yuan X, Huang C, Huang S, Xing Q, Wang C, Zhang C, Xie Y, Lei Y, Wang F, Mu L, Zhang J, Xiu F, Yan H (2021) Plasmons in the van der Waals charge-density-wave material 2H-TaSe2. Nat Commun 12:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andersen K, Thygesen KS (2013) Plasmons in metallic monolayer and bilayer transition metal dichalcogenides. Phys Rev B 88:155128

    Article  Google Scholar 

  28. Gonçalves PAD, Bertelsen LP, Xiao S, Mortensen NA (2018) Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces. Phys Rev B 97:041402

  29. Mansilla Wettstein C, Bonafé FP, Oviedo MB, Sánchez CG (2016) Optical properties of graphene nanoflakes: shape matters. J Chem Phys 144(22):224305

    Article  PubMed  Google Scholar 

  30. Mohan B, Susheela Chand S, Ahluwalia PK (2018) A first principle study of electronic and optical properties of H, F and Cl passivated triangular silicene nano-flakes. AIP Conference Proceedings 1942(1):090044

  31. Moynihan E, Rost S, O’connell E, Ramasse Q, Friedrish C, Bangert U (2020) Plasmons in MoS2 studied via experimental and theoretical correlation of energy loss spectra. J Microsc 279(3):256–264

    Article  CAS  PubMed  Google Scholar 

  32. Andersen K, Jacobsen KW, Thygesen KS (2014) Plasmons on the edge of \({\rm MoS }_{2}\) nanostructures. Phys Rev B 90:161410

  33. Zhang H, Liu L-M, Lau W-M (2013) Dimension-dependent phase transition and magnetic properties of VS2. J Mater Chem A 1:10821–10828

    Article  CAS  Google Scholar 

  34. Kim HJ, Choi BK, Lee IH, Kim MJ, Chun S-H, Jozwiak C, Bostwick A, Rotenberg E, Chang YJ (2021) Electronic structure and charge-density-wave transition in monolayer VS2. Curr Appl Phys 30:8–13

    Article  Google Scholar 

  35. Feng J, Biswas D, Rajan A, Watson MD, Mazzola F, Clark OJ, Underwood K, Marković I, McLaren M, Hunter A, Burn DM, Duffy LB, Barua S, Balakrishnan G, Bertran F, Le Fèvre P, Kim TK, van der Laan G, Hesjedal T, Wahl P, King PDC (2018) Electronic structure and enhanced charge-density wave order of monolayer VSe2. Nano Lett 18(7):4493–4499

    Article  CAS  PubMed  Google Scholar 

  36. Fuh H-R, Yan B, Wu S-C, Felser C, Chang C-R (2016) Metal-insulator transition and the anomalous hall effect in the layered magnetic materials VS2 and VSe2. New J Phys 18(11):113038

    Article  Google Scholar 

  37. van Efferen C, Berges J, Hall J, van Loon E, Kraus S, Schobert A, Wekking T, Huttmann F, Plaar E, Rothenbach N, Ollefs K, Arruda LM, Brookes N, Schönhoff G, Kummer K, Wende H, Wehling T, Michely T (2021) A full gap above the fermi level: the charge density wave of monolayer VS2. Nat Commun 12:6837

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gao D, Xue Q, Mao X, Wang W, Xu Q, Xue D (2013) Ferromagnetism in ultrathin VS\(_2\) nanosheets. J Mater Chem C 1:5909–5916

  39. Liu M, Wu C, Liu Z, Wang Z, Yao D-X, Zhong D (2020) Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2. Nano Res 13:1733–1738

    Article  CAS  Google Scholar 

  40. Zhang Y, Wu X (2013) Vanadium sulfide nanoribbons: electronic and magnetic properties. Phys Lett A 377(43):3154–3157

    Article  CAS  Google Scholar 

  41. Bernardi M, Ataca C, Palummo M, Grossman JC (2017) Optical and electronic properties of two-dimensional layered materials. Nanophotonics 6(2):479–493

    Article  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  43. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  44. Larsen AH, Vanin M, Mortensen JJ, Thygesen KS, Jacobsen KW (2009) Localized atomic basis set in the projector augmented wave method. Phys Rev B 80(19):195112

    Article  Google Scholar 

  45. Jamorski Jödicke C, Lüthi HP (2003) Time-dependent density functional theory (TDDFT) study of the excited charge-transfer state formation of a series of aromatic donoracceptor systems. J Am Chem Soc 125(1):252–264

    Article  PubMed  Google Scholar 

  46. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  47. Walter M, Häkkinen H, Lehtovaara L, Puska M, Enkovaara J, Rostgaard C, Mortensen JJ (2008) Time-dependent density-functional theory in the projector augmented-wave method. J Chem Phys 128(24):244101

    Article  PubMed  Google Scholar 

  48. Jornet-Somoza J, Lebedeva I (2019) Real-time propagation TDDFT and density analysis for exciton coupling calculations in large systems. J Chem Theory Comput 15(6):3743–3754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys Condens Matter 22(25):253202

  50. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Real-space grid implementation of the projector augmented wave method. Phys Rev B 71(3):035109

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Param Sanganak, IIT Kanpur supercomputing facility under the National Supercomputing Facility (NSM) for computing time.

Funding

There was no funding for this project.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Shalini Tomar initiated the concept of this project and contributed to the methodology, data curation, formal analysis, and writing of the original draft. Additionally, Dr. Shalini Tomar was involved in software validation, investigation, and editing of the manuscript. Dr. Ashok P. contributed to the review and editing of the manuscript, providing valuable input and expertise.

Corresponding author

Correspondence to Shalini Tomar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomar, S., P., A. Vanadium Dichalcogenides Triangular Nanoflakes: A Comparative Study of Optical and Electronic Properties. Plasmonics 19, 845–853 (2024). https://doi.org/10.1007/s11468-023-02026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02026-1

Keywords

Navigation