Skip to main content
Log in

The Optical Chiral Properties of Double-Layer T-Shaped Plasmonic Array

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Nanostructures with chiral features have a wide range of applications in circular polarizers, optical modulators, and optoelectronic devices. In this study, we designed a three-dimensional bilayer T-shaped chiral structure to investigate the circular dichroism of multilayer nanostructures. We simulated the designed chiral structure and results that showed the maximum circular dichroism value occurred when the lower layer T-shaped structure rotated to 40°. The spectral response of the proposed structure can be considered as a coupling between upper and lower resonances, and the mechanism of optical chirality is explored by simulating the internal current distribution in metal. The model revealed that different current oscillations were excited by incident light in the upper and lower layers. Our results provide insightful references for analyzing the physical mechanism of circular dichroism signals and improving the circular dichroism signals of metasurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  1. Zheng ZG, Li Y, Bisoyi HK, Wang L, Bunning TJ, Li Q (2016) Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 531(7594):352–356

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Karimi E, Schulz SA, De Leon I, Qassim H, Upham J, Boyd RW (2014) Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light: Sci Appl 3(5):e167

  3. Smith DR, Pendry JB, Wiltshire MCKJS (2004) Metamaterials and negative refractive index. Science 305(5685):788–792

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Huang Y, Xie X, Pu M, Guo Y, Xu M, Ma X, Li X, Luo X (2020) Dual-functional metasurface toward giant linear and circular dichroism. Adv Opt Mater 8(11):1902061

    Article  CAS  Google Scholar 

  5. Yang FZ (2015) From plasmon to nanoplasmonics-the frontiers of modern photonics and the role of liquid crystals in tuneable nanoplasmonics. Acta Phys Sin 64(12):124214

    Article  Google Scholar 

  6. Xiao W, Shi X, Zhang Y, Peng W, Zeng Y (2019) Circularly polarized light detector based on 2D embedded chiral nanostructures. Phys Scr 94(8):085501

    Article  ADS  CAS  Google Scholar 

  7. Li W, Coppens ZJ, Besteiro LV, Wang W, Govorov AO, Valentine J (2015) Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat Commun 6:8379

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Kong XT, Khosravi Khorashad L, Wang Z, Govorov AO (2018) Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers. Nano Lett 18(3):2001–2008

    Article  ADS  CAS  PubMed  Google Scholar 

  9. He Y, Larsen GK, Ingram W, Zhao Y (2014) Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers. Nano Lett 14(4):1976–1981

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Sharma V, Crne M, Park JO, Srinivasarao M (2009) Structural origin of circularly polarized iridescence in jeweled beetles. Science 325(5939):449–451

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Kleinlogel S, White AG (2008) The secret world of shrimps: polarisation vision at its best. PLoS ONE 3(5):e2190

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Maoz BM et al (2012) Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies. J Am Chem Soc 134(42):17807–17813

    Article  CAS  PubMed  Google Scholar 

  13. Zhu F, Li X, Li Y, Yan M, Liu S (2015) Enantioselective circular dichroism sensing of cysteine and glutathione with gold nanorods. Anal Chem 87(1):357–361

    Article  CAS  PubMed  Google Scholar 

  14. Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy RV, Lapthorn AJ, Kelly SM, Barron LD, Gadegaard N, Kadodwala M (2010) Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat Nanotechnol 5(11):783–787

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Mochida Y, Cabral H, Miura Y, Albertini F, Fukushima S, Osada K, Nishiyama N, Kataoka K (2014) Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor. ACS Nano 8(7):6724–6738

    Article  CAS  PubMed  Google Scholar 

  16. Okamoto H, Imura K (2013) Visualizing the optical field structures in metal nanostructures. J Phys Chem Lett 4(13):2230–2241

    Article  CAS  Google Scholar 

  17. Narushima T, Hashiyada S, Okamoto H (2014) Nanoscopic study on developing optical activity with increasing chirality for two-dimensional metal nanostructures. ACS Photonics 1(8):732–738

    Article  CAS  Google Scholar 

  18. Sun B, Yu Y (2018) Analysis of circular dichroism in chiral metamaterial at terahertz frequencies. J Phys D: Appl Phys 52(2):025105

    Article  ADS  Google Scholar 

  19. Mamonov EA, Murzina TV, Kolmychek IA, Maydykovsky AI, Valev VK, Silhanek AV, Verbiest T, Moshchalkov VV, Aktsipetrov OA (2012) Chirality in nonlinear-optical response of planar G-shaped nanostructures. Opt Express 20(8):8518–8523

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Zu S, Bao Y, Fang Z (2016) Planar plasmonic chiral nanostructures Nanoscale 8(7):3900–3905

    CAS  PubMed  Google Scholar 

  21. Knipper R, Kopecký V, Huebner U, Popp J, Mayerhöfer TG (2018) Slit-enhanced chiral- and broadband infrared ultra-sensing. ACS Photonics 5(8):3238–3245

    Article  CAS  Google Scholar 

  22. Decker M, Zhao R, Soukoulis CM, Linden S, Wegener M (2010) Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt Lett 35(10):1593–1595

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Li T, Ye RX, Li C, Liu H, Wang SM, Cao JX, Zhu SN, Zhang X (2009) Structural-configurated magnetic plasmon bands in connected ring chains. Opt Express 17(14):11486–11494

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Valev VK, Silhanek AV, Smisdom N, De Clercq B, Gillijns W, Aktsipetrov OA, Ameloot M, Moshchalkov VV, Verbiest T (2010) Linearly polarized second harmonic generation microscopy reveals chirality. Opt Express 18(8):8286–8293

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Tudahong A, Qu Y, Bai J-R, Zhang Z-Y (2020) Studies of circular dichroism of planar composite metal nanostructure arrays. Acta Phys Sin 69(10):107802

    Article  Google Scholar 

  26. Plum E, Liu X, Fedotov VA, Chen Y, Tsai DP, Zheludev NI (2009) Metamaterials: optical activity without chirality. Phys Rev Lett 102(11):113902

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Aba T, Qu Y, Abudukelimu A, Ullah H, Zhang Z (2019) Chiral response of a metasurface composed of nanoholes and tilted nanorods. Appl Opt 58(22):5936–5941

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Yannopapas V (2009) Circular dichroism in planar nonchiral plasmonic metamaterials. Opt Lett 34(5):632–634

    Article  ADS  PubMed  Google Scholar 

  29. Feng C, Wang ZB, Lee S, Jiao J, Li L (2012) Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams. Opt Commun 285(10–11):2750–2754

    Article  ADS  CAS  Google Scholar 

  30. Mathew SP, Mondal PC, Moshe H, Mastai Y, Naaman R (2014) Non-magnetic organic/inorganic spin injector at room temperature. Appl Phys Lett 105(24):242408

    Article  ADS  Google Scholar 

  31. Biyuan W, Wang M, Sun Y, Wu F, Shi Z, Wu X (2021) Near-infrared chirality of plasmonic metasurfaces with gold rectangular holes. Adv Compos Hybrid Mater 5(3):2527–2535

    Google Scholar 

  32. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  ADS  CAS  Google Scholar 

  33. Yin X, Schaferling M, Metzger B, Giessen H (2013) Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model. Nano Lett 13(12):6238–6243

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China, grant number 62005168 and 62075132, and by Natural Science Foundation of Shanghai, grant number 22ZR1443100.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, L.G.; methodology, G.X.; software, G.X.; validation, R.P.; formal analysis, G.X.; investigation, G.X.; resources, L.G.; data curation, G.X.; writing—original draft preparation, G.X.; writing—review and editing, H.H.; visualization, G.X.; supervision, L.G.; project administration, L.G.; funding acquisition, L.G. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to LiangLiang Gu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, G., Gu, L., Peng, R. et al. The Optical Chiral Properties of Double-Layer T-Shaped Plasmonic Array. Plasmonics 19, 159–165 (2024). https://doi.org/10.1007/s11468-023-01971-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01971-1

Keywords

Navigation