Skip to main content
Log in

Ultra-Fast All-Optical Plasmonic Dual-Band Nonlinear Off–On and Two-Port Switches

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, two ultra-fast all-optical plasmonic switches based on metal–insulator–metal (MIM) plasmonic waveguides side-coupled to the cavity by stubs are proposed. The cavities are filled with a nonlinear Kerr material and the switching occurs due to the self-phase-modulation (SPM) effect. The first structure can achieve an Off–On switching function by adjusting the intensity of the input light or utilizing the optical bistability effect at the 1550 nm and 850 nm telecommunication windows. In the second structure, by adding another nonlinear cavity a two-port switch is designed. The finite-deference time-domain (FDTD) method is used to obtain the simulation results. The ultra-fast switches that are being proposed are equipped with impressive switching mechanisms and have a response time that is measured in picoseconds. The Off–On switch has a response time of 0.25 ps, while the two-port switch has a response time of 1.5 ps. These all-optical switches have the potential to be extremely useful in photonic integrated circuits (PICs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

Data sharing not applicable to this article as no datasets were generated or analyzed during this research.

References

  1. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  ADS  CAS  Google Scholar 

  2. Zhang J, Zhang L (2012) Nanostructures for surface plasmons. Adv Opt Photonics 4:157–321

    Article  ADS  Google Scholar 

  3. Nurmohammadi T, Abbasian K, Yadipour R (2018) Numerical study of dumbbell-shaped gold nanoparticles using in plasmonic waveguides in near infra-red spectrums. Opt Quantum Electron 50:1–13

    Article  CAS  Google Scholar 

  4. Veronis G, Fan S (2007) Modes of subwavelength plasmonic slot waveguides. J Light Technol 25:2511–2521

    Article  Google Scholar 

  5. Zhu B, Chen M, Zhu Q, Zhou G, Abdelazim NM, Zhou W, Kershaw SV, Rogach AL, Zhao N, Tsang HK (2019) Integrated plasmonic infrared photodetector based on colloidal HgTe quantum dots. Adv Mater Technol 4:1900354

    Article  CAS  Google Scholar 

  6. Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q (2012) All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12:5784–5790

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Tunlz A (2021) Nanoscale nonlinear plasmonic in photonic waveguides and circuits. Riv Nuovo Cimento 44:193–249

    Article  Google Scholar 

  8. Nielsen MP, Shi X, Dichtl P, Msier SA, Oulton RF (2018) Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing over micron length scales. Science 358:1179–1181

    Article  ADS  Google Scholar 

  9. Campos A, Troc N, Cottanich E, Pellari M, Weissker HC, Lerme J, Kociak M, Hillenkamp M (2019) Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local enviroments. Nat Phys 15:275–280

    Article  CAS  Google Scholar 

  10. Ciraci C, Hill RT, Mock JJ, Urzhumov Y, Fernandez-Dominguez AL, Maier SA, Pendry JB, Chikoti A, Smith DR (2012) Probing the ultimate limits of plasmonic enhancement. Science 337:1072–1074

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shin W, Cai W, Catrysse PB, Veronis G, Brongersma ML, Fan S (2013) Broadband sharp 90-degree bends and T-splitters in plasmonic coaxial waveguides. Nano Lett 13:4753–4758

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Pooretemad S, Pav MR, Ghattan Z, Granpayeh N (2023) Ultra-compact all-optical plasmonic switch for three telecommunication windows using a nonlinear Kerr material and Fano resonance. Appl Opt 62:4123–4133

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Khani S, Danaiean M, Rezaei P (2019) Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths. Plasmonics 14:53–62

    Article  CAS  Google Scholar 

  14. Pooretemad S, Malekijavan A, Aslinezad M (2021) Ultrawideband bandstop filter based on Fano resonance and rectangular resonators. Appl Opt 60:4266–4272

    Article  ADS  PubMed  Google Scholar 

  15. Pav MR, Granpayeh N, Hosseini SP, Rahimzadegan A (2019) Ultracompact double tunable two-channel plasmonic filter and 4-channel multi/demultiplexer design based on aperture coupled plasmonic slot cavity. Opt Commun 437:285–289

    Article  ADS  CAS  Google Scholar 

  16. Lin X, Huang X (2009) Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter. J Opt Soc Am B 26:1263–1268

    Article  ADS  CAS  Google Scholar 

  17. Khatooni HS, Abbasian K, Nurmohammadi T (2020) A tunable band-stop plasmonic waveguide filter and switch designing with triangular resonator based on Kerr non-linearity. Optik 224:165708

    Article  ADS  Google Scholar 

  18. Sumimura A, Ota M, Nakayama K, Ito M, lshii Y, Fukuda M (2016) Low-return-loss plasmonic multiplexer with tapered structure. IEEE Photon Technol Lett 28:2419–2422

    Article  ADS  CAS  Google Scholar 

  19. Rahimzadegan A, Granpayeh N, Hosseini SP (2014) Improved plasmonic filter, ultracompact demultiplexer, and splitter. J Opt Soc Korea 18:261–273

    Article  Google Scholar 

  20. Li J, Ye H, Yu Z, Liu Y (2017) Design of broadband reciprocal optical diode in a silicon waveguide assisted by silver surface plasmonic splitter. Opt Express 25:19129–19136

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Johnson PB, Christy RW (2018) Compact flexible multifrequency splitter based on plasmonic graded metallic grating arc waveguide. Opt Lett 43:1898–1901

    Article  Google Scholar 

  22. Asgari S, Pooretemad S, Granpayeh N (2020) Plasmonic refractive index sensor based on a double concentric square ring resonator and stubs. Photonics Nanostructures-Fundam Appl 42:100857

    Article  Google Scholar 

  23. Zhang Z, Luo L, Yue C, Zhang W, Yan S (2016) Fano resonance based on metal-insulator-metal waveguide coupled double rectangular cavities for plasmonic nanosensors. Sensors 16:642

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Zhang ZD, Wang RB, Zhang ZK, Tang J, Zhang WD, Xue CY, Yan SB (2017) Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator. Plasmonics 12:1007–1013

    Article  CAS  Google Scholar 

  25. Zhao X, Zhang Z, Yan S (2017) Tunable Fano resonance in asymmetric MIM waveguide structure. Sensors 17:11494

    ADS  Google Scholar 

  26. Rakhshani MR (2019) Refractive index sensor based on concentric triple racetrack resonators side-coupled to metal–insulator–metal waveguide for glucose sensing. J Opt Soc Am B 36:2834–2842

    Article  ADS  CAS  Google Scholar 

  27. Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6:737–748

    Article  ADS  CAS  Google Scholar 

  28. Kinyaevskiy I, Kovalev V, Danilov P, Smirnov N, Kudryashov S, Koribut A, Ionin A (2021) Asymmetric spectral broadening of sub-picosecond laser pulse in BaWO4 crystal: interplay of self-phase modulation, stimulated Raman scattering, and orientational Kerr nonlinearity. Opt Lett 46:697–700

    Article  ADS  PubMed  Google Scholar 

  29. Tuniz A, Palomba S, de Sterke CM (2020) Pulse length dependent near-infrared ultrafast nonlinearity of gold by self-phase mogulation. Appl Phys Lett 117:071105

    Article  ADS  CAS  Google Scholar 

  30. Shan Y, Li Z, Ruan B, Zhu J, Xiang Y, Dai X (2019) Two-dimensional Bi2S3-based all- optical photonic devices with strong nonlinearity due to spatial self-phase modulation. Nanophotonics 8:2225–2234

    Article  CAS  Google Scholar 

  31. Ahadi S, Granpayeh N (2015) Femtosecond all-optical switching based on asymmetric plosmonic Kerr Fabry-perot resonator. Opt Commun 349:36–41

    Article  ADS  CAS  Google Scholar 

  32. Kumar S, Sen M (2021) Integrable all-optical switch for photonic integrated circuits. J Opt Soc Am B 38:611–620

    Article  ADS  Google Scholar 

  33. Wurtz GA, Pollard R, Zayat AV (2006) Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys Rev Lett 97:057402

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Christos A, Ciraci C, Smith DR (2014) Enhanced optical bistability with film-coupled plasmonic nanocubes. Phys Rev Lett 104:063108

    Google Scholar 

  35. Zhang K, Gao L (2017) Optical bistability in graphene-wrapped dielectric nanowires. Opt Express 25:13747–13759

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Ngo QM, Le KQ, Lam VD (2012) Optical bistability based on guided-mode resonances in photonic crystal slabs. J Opt Soc Am B 29:1291–1295

    Article  ADS  CAS  Google Scholar 

  37. Maier SA (2007) Plasmonics: fundamentals and applications. Springer

  38. Yang HU, Archangel JD, Sundheimer ML, Tucker E, Boreman GD, Raschke MB (2015) Optical dielectric function of silver. Phys Rev B 91:235137

    Article  ADS  Google Scholar 

  39. Zhang Z, Yang J, He X, Zhang J, Huang J, Chen D, Han Y (2018) Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 18:18010116

    ADS  Google Scholar 

  40. Huaiqing L, Guobin R, Yixiao G, Bofeng Z, Haisu L, Beliei W, Shuisheng J (2015) Ultrafast and low-power all-optical switch based on asymmetric electromagnetically induced transparency in MIM waveguide containing Kerr material. Opt Commun 353:189–194

    Article  Google Scholar 

  41. Hu F, Yi H, Zhou Z (2011) Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Opt Express 19:4848–4855

    Article  ADS  PubMed  Google Scholar 

  42. Pav MR, Hosseini SP, Granpayeh N, Rahimzadegan A (2018) Application of ultracompact aperture-coupled plasmonic slot cavity with spectrally splitting capability. J Nanophotonics 12:016010

    Article  ADS  Google Scholar 

  43. Hu F, Zhou Z (2011) Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities. J Opt Soc Am B 28:2518–2523

    Article  ADS  CAS  Google Scholar 

  44. Zhang QF, Liu WM, Xue ZQ, Wu JL, Wang SF, Wang DL, Gong QH (2003) Ultrafast optical Kerr effect of Ag–BaO composite thin films. Appl Phys Lett 82:958–960

    Article  ADS  CAS  Google Scholar 

  45. Shahamat Y, Vahedi M (2017) Pump-tuned plasmon-induced transparency for sensing and switching applications. Opt Commun 401:40–45

    Article  ADS  CAS  Google Scholar 

  46. Nurmohammadi T, Abbasian K, Yadipour R (2018) Ultra-fast all-optical plasmonic switch in near infra-red spectrum using a Kerr nonlinear ring resonator. Opt Commun 410:142–147

    Article  ADS  CAS  Google Scholar 

  47. Kong Y, Lin R, Wei Q, Liu C, Wang S (2017) Active dual-wavelength optical switch-based plasmonic demultiplexer using metal-Kerr nonlinear-metal waveguide. IEEE Photonics J 9:1–8

    ADS  Google Scholar 

  48. Nurmohammadi T, Abbasian K, Yadipour R (2018) Ultra-fast all-optical plasmon induced transparency in MIM waveguide containing two Kerr nonlinear ring resonator. J Opt 20:055504

    Article  ADS  Google Scholar 

  49. Wang X, Jiang H, Chen J, Wang P, Lu Y, Ming H (2011) Optical bistability effect in plasmonic racetrack resonator with high extinction ratio. Opt Express 19:19415–19421

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Li C (2017) Nonlinear optics principle and applications. Springer

  51. He Z, Li H, Zhan S, Li B, Chen Z, Xu H (2015) Tunable multi-switching in plasmonic waveguide with Kerr nonlinear resonator. Sci Rep 5:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The idea of this research article is based on M.R. Pav’s M.S. thesis, which was developed with the help of S. Pooretemad. Pav and Pooretemad conducted all the simulations, while all the steps were supervised by Prof. N. Granpayeh and they used his guidance in all stages. The manuscript was written by Pooretemad and Pav, and edited by prof. Granpayeh, who also reviewed the pictures, simulation results, and formulas.

Corresponding author

Correspondence to Nosrat Granpayeh.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pav, M., Pooretemad, S. & Granpayeh, N. Ultra-Fast All-Optical Plasmonic Dual-Band Nonlinear Off–On and Two-Port Switches. Plasmonics 19, 111–121 (2024). https://doi.org/10.1007/s11468-023-01966-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01966-y

Keywords

Navigation