Skip to main content
Log in

Pregnancy Detection Through Modelling of Dual-Polarized Plasmonic PREGBIOSENSOR by Urine Samples Analysis

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This research work presents a biomedical application of “photonic crystal fiber (\(\mathrm{PCF}\))”–based “surface plasmon resonance (\(\mathrm{SPR}\))” biosensors for the earliest possible detection of pregnancy to reduce the risk of miscarriage. The sensor design contains a combination of \(\mathrm{Au}\), \({\mathrm{TiO}}_{2}\), and \({\mathrm{MgF}}_{2}\) layers of plasmonic materials, which provide better stability to the sensor model. The biosensor parameters are examined for both \(\mathrm{TM mode}\) and \(\mathrm{TE mode}\), following the principle of couple mode light theory. The analyte used in the proposed sensor is women’s urine samples, which are investigated based on the variations in their refractive index (\(\mathrm{RI}\)) values. The biosensor has obtained the highest wavelength sensitivity (\(\mathrm{WS}\)) of \(110000\mathrm{ nm}/\mathrm{RIU}\) and \(130000\mathrm{ nm}/\mathrm{RIU}\) for \(\mathrm{TM mode}\) and \(\mathrm{TE mode}\) respectively. Peak amplitude sensitivity (\(\mathrm{AS})\) of \(24180 {\mathrm{RIU}}^{-1}\) and \(31670 {\mathrm{RIU}}^{-1}\) is obtained for \(\mathrm{TM mode}\) and \(\mathrm{TE mode}\), respectively. The biosensor can achieve sensor resolution (\(\mathrm{SR})\) in the order of \({10}^{-7}\) for both \(\mathrm{TM mode}\) and \(\mathrm{TE mode}\). The \({R}^{2}\) close to unity is achieved for both \(\mathrm{TM mode}\) and \(\mathrm{TE mode}\). The maximum \(\mathrm{FOM}\) obtained from the proposed biosensor is \(984.84 {\mathrm{RIU}}^{-1}\) and \(1078.83 {\mathrm{RIU}}^{-1}\) for \(\mathrm{RI}\) \(1.3420\) and \(1.3430\mathrm{ RIU}\), respectively, corresponding to \(\mathrm{TE mode}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

The data generated during the investigation is available from the corresponding author upon request.

References

  1. Fortin S, Keitel M (2021) "Nine months of labor: the psychosocial weight of a pregnancy after a gestational loss." Illn Crisis Losshttps://doi.org/10.1177/10541373211007850

  2. Derakhshan A, Philips EM,  Ghassabian A, Santos S, Asimakopoulos AG, Kannan K (2021) "Association of urinary bisphenols during pregnancy with maternal, cord blood and childhood thyroid function." Environ Int 146:106160. https://doi.org/10.1016/j.envint.2020.106160

  3. Qin Q, Chang H,  Zhou S, Zhang S,  Yuan D, Yu Ll, Qu T (2021) "Intrauterine administration of peripheral blood mononuclear cells activated by human chorionic gonadotropin in patients with repeated implantation failure: a meta-analysis." J Reprod Immunol 145:103323. https://doi.org/10.1016/j.jri.2021.103323

  4. Washington Uo "Radiology Services at UW Medical Center - Roosevelt," University of Washington, [Online]. Available: https://rad.washington.edu/. Accessed 20 January 2022].

  5. Mitu SA, Ahmed K, Zahrani FAA, Grover A, Rajan MSM, Moni MA (2021) "Development and analysis of surface plasmon resonance based refractive index sensor for pregnancy testing." Opt Lasers Eng 140:106551. https://doi.org/10.1016/j.optlaseng.2021.106551

  6. Shakya AK, Singh S (2023) "Development of a generalized Fourier transform model for distinct household oil samples by performing spectroscopy analysis." Results Opt 10:100355. https://doi.org/10.1016/j.rio.2023.100355

  7. Shakya AK, Ramola A, Singh S, Van V (2022) Design of an ultra-sensitive bimetallic anisotropic PCF SPR biosensor for liquid analytes sensing. Opt Express 30(6):9233–9255

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Agarwal A, Mudgal N, Choure KK, Pandey R, Singh G, Bhatnagar SK (2023) Photonic crystal-based water concentration estimation in blood using machine learning for identification of the haematological disorder. Photonics 10(1):71

    Article  CAS  Google Scholar 

  9. Shakya  AK, Singh S (2022) "Design of novel Penta core PCF SPR RI sensor based on fusion of IMD and EMD techniques for analysis of water and transformer oil." Meas188:110513. https://doi.org/10.1016/j.measurement.2021.110513

  10. Butt M, Khonina S, Kazanskiy N (2021) Plasmonics: a necessity in the field of sensing- review. Fiber Integr Opt 40(1):14–47

    Article  ADS  Google Scholar 

  11. Ramola A, Marwaha A, Singh S (2021) "Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing." Appl Phys A vol 127:643. https://doi.org/10.1007/s00339-021-04785-2

  12. Karki B, Vasudevan B, Uniyal A, Pal A,  Srivastava V (2022) "Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor." Optik 270:169947. https://doi.org/10.1016/j.ijleo.2022.169947

  13. Ahmed K, Paul BK, Vasudevan B, Rashed ANZ, Maheswar R (2019) "Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application." Results Phys 12:2021–2025. https://doi.org/10.1016/j.rinp.2019.02.026

  14. Shakya AK, Singh S (2023) Novel Merger of spectroscopy and refractive index sensing for modelling hyper sensitive hexa-slotted plasmonic sensor for transformer oil monitoring in near-infrared region. Opt Quant Electron 55(9):764

    Article  CAS  Google Scholar 

  15. Thenmozhi H, Rajan M, Ahmed K (2019) "D-shaped PCF sensor based on SPR for the detection of carcinogenic agents in food and cosmetics." Optik180:264–270. https://doi.org/10.1016/j.ijleo.2018.11.098

  16. Shakya AK,  Singh S (2021) "Design of dual-polarized tetra core PCF based plasmonic RI sensor for visible-IR spectrum." Opt. Commun 478:126372. https://doi.org/10.1016/j.optcom.2020.126372

  17. Shakya AK, Singh S (2021) Design and analysis of dual-polarized Au and TiO2-coated photonic crystal fiber surface plasmon resonance refractive index sensor: an extraneous sensing approach. J Nanophotonics 15(1):016009

    Article  CAS  ADS  Google Scholar 

  18. Shakya AK, Singh  S  (2022) "Design of biochemical biosensor based on transmission, absorbance, and refractive index." Biosens Bioelectron 10:100089. https://doi.org/10.1016/j.biosx.2021.100089

  19. Chen K, Yuan D, Zhao Y (2021) "Review of optical hydrogen sensors based on metal hydrides: recent developments and challenges." Opt Laser Technol 137:106808. https://doi.org/10.1016/j.optlastec.2020.106808

  20. Khanikar T, De M, Singh VK (2021) "A review on infiltrated or liquid core fiber optic SPR sensors." Photonics Nanostructures - Fundam Appl 46:100945. https://doi.org/10.1016/j.photonics.2021.100945

  21. Singh TI, Singh P, Karki B (2023) "Early detection of chikungunya virus utilizing the surface plasmon resonance comprising a silver-silicon-PtSe2 multilayer structure." Plasmonics 18:1173–1180. https://doi.org/10.1007/s11468-023-01840-x

  22. Fang H, Wei C, Yang H, Zhao B, Yuan L, Li J (2021) "D-shaped photonic crystal fiber plasmonic sensor based on silver-titanium dioxide composite micro-grating." Plasmonics 16:2049–2059. https://doi.org/10.1007/s11468-021-01468-9

  23. Mudgal N, Saharia A, Agarwal A, Singh G (2023) ZnO and Bi-metallic (Ag–Au) layers based surface plasmon resonance (SPR) biosensor with BaTiO3 and graphene for biosensing applications. IETE J Res 69(2):932–939

    Article  Google Scholar 

  24. Shakya AK Singh S (2022) "Gold-ZnO coated surface plasmon resonance refractive index sensor based on photonic crystal fiber with tetra core in hexagonal lattice of elliptical air holes," in Robotics, Control, and Computer Vision: Select Proceedings of ICRCCV 2022 Singapore Springer Nature 567–576

  25. Mudgal N, Yupapin P, Ali J, Singh G (2020) "BaTiO3-graphene-affinity layer–based surface plasmon resonance (SPR) biosensor for pseudomonas bacterial detection," Plasmonics 15:1221–1229. https://doi.org/10.1007/s11468-020-01146-2

  26. Karki B, Salah NH, Srivastava G, Muduli  A, Yadav RB (2023) "A simulation study for dengue virus detection using surface plasmon resonance sensor heterostructure of silver, barium titanate, and cerium oxide." Plasmonics 1–10. https://doi.org/10.1007/s11468-023-01907-9

  27. Mudgal N, Saharia A, Choure KK, Agarwal A, Singh G (2020) "Sensitivity enhancement with an anti-reflection coating of silicon nitride (Si3N4) layer in silver-based Surface Plasmon Resonance (SPR) sensor for sensing of DNA hybridization." Appl Phys A 126:946. https://doi.org/10.1007/s00339-020-04126-9

  28. Karki B, Uniyal A, Chauhan B, Pal A (2022) "Sensitivity enhancement of a graphene, zinc sulfide-based surface plasmon resonance biosensor with an Ag metal configuration in the visible region."J Comput Electron 21:445–452. https://doi.org/10.1007/s10825-022-01854-4

  29. Monfared YE, Qasymeh M (2021) "Plasmonic biosensor for low-index liquid analyte detection using," Plasmonics 16:881–889. https://doi.org/10.1007/s11468-020-01308-2

  30. Gao J, Jiang S, Yang W, Liu R, Feng J, Zha Z, Zhang C, Jiang M, Fan X (2023) "Design a D-shaped single mode fiber SPR sensor with a composite nanostructure of HMM/monolayer graphene for DNA hybridization detection." Opt Laser Technol 158:1088. https://doi.org/10.1016/j.optlastec.2022.108854

  31. Shakya AK, Singh S (2022) "Designing of a novel PCF biosensor having octagonal core and based on SPR for chemical and heavy metal sensing," in 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India

  32. Mollah MA, Yousufali Md, Ankan IM, Sarker  MMRH (2020) "Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer." Sens Bio-Sens Res 29:100344. https://doi.org/10.1016/j.sbsr.2020.100344

  33. Lidiya AE, Raja RVJ, DaiPham V, Ngo QM, Vigneswaran D "Detecting hemoglobin content blood glucose using surface plasmon resonance in D-shaped photonic crystal fiber." Opt Fiber Technol 50(219):132–138. https://doi.org/10.1016/j.yofte.2019.03.009

  34. An G, Li S, Wang H, Zhang X, Yan X (2018) Quasi-D-shaped optical fiber plasmonic refractive index sensor. J Opt 20(3):035403

    Article  ADS  Google Scholar 

  35. Kamkar A, Zakaria R, Zainuddin NAM, Tanvir J, Grover A, Zahrani FAA, Ahmed K (2022) "Long-range surface plasmon resonance–based sensitivity study on D-shaped Ag-MgF2-coated models with analyte variations." Plasmonics 17:277–286. https://doi.org/10.1007/s11468-021-01524-4

  36. Yasli A, Ademgil H (2018) Geometrical comparison of photonic crystal fiber-based surface plasmon resonance sensors. Opt Eng 57(3):030801

    Article  ADS  Google Scholar 

  37. Li T, Zhu L, Yang X, Lou X, Yu L (2020) A refractive index sensor based on H-shaped photonic crystal fibers coated with Ag-graphene layers. Sens 20(3):741

    Article  ADS  Google Scholar 

  38. Shakya AK, Singh S (2022) "Design of a novel refractive index BIOSENSOR for heavy metal detection from water samples based on fusion of spectroscopy and refractive index sensing," Optik. https://doi.org/10.1016/j.ijleo.2022.169892

  39. Shakya AK, Singh S (2022) Design of refractive index sensing based on optimum combination of plasmonic materials gold with indium tin oxide/titanium dioxide. J of Nanophotonics 16(2):026010

    Article  CAS  ADS  Google Scholar 

  40. Shakya AK, Singh S (2022) "State of the art in fiber optics sensors for heavy metals detection." Opt Laser Technol 153:108246. https://doi.org/10.1016/j.optlastec.2022.108246

  41. Ahmed K, AlZain MA, Abdullah H, Luo Y, Vigneswaran D, Faragallah OS, Eid MMA, Rashed ANZ (2021) Highly sensitive twin resonance coupling refractive index sensor based on gold- and MgF2-coated nano metal films. Biosens 11(4):104

    Article  CAS  Google Scholar 

  42.  Robinson S, Dhanlaksmi N (2017) "Photonic crystal based biosensor for the detection of glucose concentration in urine." Photonic Sens 7:11–19https://doi.org/10.1007/s13320-016-0347-3

  43. Yadav A, Sharan P, Kumar A (2020) "Surface plasmonic resonance based five layered structure-biosensor for sugar level measurement in human." Results Opt 1:100002. https://doi.org/10.1016/j.rio.2020.100002

  44. CMCP Ltd (2022) "1 week pregnant: early symptoms and HCG levels," Chelsea Magazine Company. [Online] Available. https://www.baby-magazine.co.uk/1-week-pregnant/Accessed 03 March 2022

  45. Isti MIA, Talukder H, Islam SR, Nuzhat  S, Sanwar A (2020)"Asymmetrical D-channel photonic crystal fiber-based plasmonic sensor using the wavelength interrogation and lower birefringence peak method." Results Phys 19:103372. https://doi.org/10.1016/j.rinp.2020.103372

  46. Reeves W, Knight J, Russell P, Roberts P (2002) Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt Express 10(14):609–613

    Article  PubMed  ADS  Google Scholar 

  47. Yang H, Liu M, Chen Y, Guo L, Xiao G, Liu H, Li J, Yuan L (2021) Highly sensitive graphene-Au coated plasmon resonance PCF sensor. Sens 21(3):818

    Article  CAS  ADS  Google Scholar 

  48. Hossain M, Hossain MS, Islam S, Sakib M, Islam KZ, Hossain M, Hossain M, Hosen A, Cho GH (2018) "Numerical development of high-performance quasi D-shape PCF-SPR biosensor: an external sensing approach employing gold." Results Phys 18:103281. https://doi.org/10.1016/j.rinp.2020.103281

  49. Liu C, Su W, Wang F, Li X, Liu Q, Mu H, Sun T, Chu PK (2018) Birefringent PCF-based SPR sensor for a broad range of low refractive index detection. IEEE Photonics Technol Lett 30(16):1471–1474

    Article  CAS  ADS  Google Scholar 

  50. Wang J, Liu C, Wang F, Su W, Yang L, Lv J, Fu G, Li X, Liu Q, Sun T, Chu PK (2020) "Surface plasmon resonance sensor based on coupling effects of dual photonic crystal fibers for low refractive indexes detection." Results Phys 18:103240 https://doi.org/10.1016/j.rinp.2020.103240

  51. Singh S, Prajapati YK (2019) "Highly sensitive refractive index sensor based on D-shaped PCF." Appl Phys A  125(125:437):437 https://doi.org/10.1007/s00339-019-2731-5

  52. Wang H, Rao W, Luo J, Fu H (2021) A dual-channel surface plasmon resonance sensor based on dual-polarized photonic crystal fiber for ultra-wide range and high sensitivity of refractive index detection. IEEE Photonics J 13(1):6800611

    Article  CAS  Google Scholar 

  53. Hasan MR, Akter S, Rifat AA, Rana S, Ahmed K, Ahmed R, Subbaraman H (2018) Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor. IEEE Sens J 18(1):133–140

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors enormously thank all anonymous reviewers and Editor-in-Chief for their comments, concerns, queries, and constructive suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Ayushman Ramola: Conceptualization, Methodology, Software, Writing – original draft, Investigation; Validation, Anupma Marwaha: Supervision, Validation, Surinder Singh: Supervision, Validation.

Corresponding author

Correspondence to Ayushman Ramola.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramola, A., Marwaha, A. & Singh, S. Pregnancy Detection Through Modelling of Dual-Polarized Plasmonic PREGBIOSENSOR by Urine Samples Analysis. Plasmonics 19, 33–49 (2024). https://doi.org/10.1007/s11468-023-01962-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01962-2

Keywords

Navigation