Skip to main content
Log in

Numerical Study of Metal Nano-Orifices for Optical Sizing of Ultrafine Particles in Aerosols

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Optical particle sizers are widely used aerosol instruments which detect pulses of light scattered from individual airborne particles to measure their sizes. Existing optical particle sizers based on conventional optics generally cannot measure particles with diameters smaller than 100 nm, known as ultrafine particles, because optical signals are too weak due to dominant Rayleigh scattering in this particle size range. To address this challenge, we propose to harvest the nanoscale light confinement effects from nanostructures to boost the optical signals for sizing ultrafine particles. In this work, we numerically studied a nano-optical particle sizer based on a metal nano-orifice, essentially a subwavelength nano-aperture in a metal thin film with a flow-through nanofluidic channel for aerosols. When an ultrafine particle travels through the metal nano-orifice, the light transmission through the orifice gives a pulsatile optical signal, and its pulse height is correlated with the particle size. We modeled the optical responses of the metal nano-orifice using finite difference time domain simulation and the aerodynamic behaviors of ultrafine particles using finite element analysis and particle tracing technique. The numerical results suggest that ultrafine particles can be effectively sized through the metal nano-orifice. The pulse heights are found to be proportional to the third power of particle diameter and remain consistent when particle trajectories inside the orifice vary widely. This work is the first theoretical investigation of plasmonic sensors for aerosol particles. The ability of the metal nano-orifice to size ultrafine particles lays the foundation for further breakthroughs in optical-based aerosol sensing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data of this work are available from the corresponding author upon request.

References

  1. Schraufnagel DE (2020) The health effects of ultrafine particles. Exp Mol Med 52(3):311–317. https://doi.org/10.1038/s12276-020-0403-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kwon HS, Ryu MH, Carlsten C (2020) Ultrafine particles: unique physicochemical properties relevant to health and disease. Exp Mol Med 52(3):318–328. https://doi.org/10.1038/s12276-020-0405-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Downward GS, van Nunen EJ, Kerckhoffs J et al (2018) Long-term exposure to ultrafine particles and incidence of cardiovascular and cerebrovascular disease in a prospective study of a dutch cohort. Environ Health Perspect 126(12):127007. https://doi.org/10.1289/ehp3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu R (2001) Particle characterization: light scattering methods, vol 13. Springer Science & Business Media. https://doi.org/10.1007/0-306-47124-8

    Article  Google Scholar 

  5. Clarke A, Porter J, Valero F et al (1996) Vertical profiles, aerosol microphysics, and optical closure during the Atlantic stratocumulus transition experiment: measured and modeled column optical properties. J Geophys Res-Atmos 101(D2):4443–4453. https://doi.org/10.1029/95JD03140

    Article  ADS  Google Scholar 

  6. Clarke AD, Ahlquist NC, Howell S et al (2002) A miniature optical particle counter for in situ aircraft aerosol research. J Atmos Oceanic Tech 19(10):1557–1566. https://doi.org/10.1175/1520-0426(2002)019⟨1557:AMOPCF⟩2.0.CO;2

  7. Gao R, Perring A, Thornberry T et al (2013) A high-sensitivity low-cost optical particle counter design. Aerosol Sci Technol 47(2):137–145. https://doi.org/10.1080/02786826.2012.733039

    Article  CAS  ADS  Google Scholar 

  8. TSI Laser Aerosol Spectrometer (LAS) 3340A (2023). https://tsi.com/products/particle-sizers/particle-size-spectrometers/laser-aerosol-spectrometer-3340a/

  9. Pan M, Lednicky JA, Wu CY (2019) Collection, particle sizing and detection of airborne viruses. J Appl Microbiol 127(6):1596–1611. https://doi.org/10.1111/jam.14278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lezec HJ, Degiron A, Devaux E et al (2002) Beaming light from a subwavelength aperture. Science 297(5582):820–822. https://doi.org/10.1126/science.1071895

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830. https://doi.org/10.1038/nature01937

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Degiron A, Lezec H, Yamamoto N et al (2004) Optical transmission properties of a single subwavelength aperture in a real metal. Opt Commun 239(1):61–66. https://doi.org/10.1016/j.optcom.2004.05.058

    Article  CAS  ADS  Google Scholar 

  13. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445(7123):39–46. https://doi.org/10.1038/nature05350

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Brolo AG, Gordon R, Leathem B et al (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20(12):4813–4815. https://doi.org/10.1021/la0493621

    Article  CAS  PubMed  Google Scholar 

  15. Gordon R (2019) Biosensing with nanoaperture optical tweezers. Opt Laser Technol 109:328–335. https://doi.org/10.1016/j.optlastec.2018.07.019

    Article  CAS  ADS  Google Scholar 

  16. Juan ML, Gordon R, Pang Y et al (2009) Self-induced back-action optical trapping of dielectric nanoparticles. Nat Phys 5(12):915–919. https://doi.org/10.1038/nphys1422

    Article  CAS  Google Scholar 

  17. Pang Y, Gordon R (2011) Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Lett 11(9):3763–3767. https://doi.org/10.1021/nl201807z

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Chen C, Juan ML, Li Y et al (2012) Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity. Nano Lett 12(1):125–132. https://doi.org/10.1021/nl2031458

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Pang Y, Gordon R (2012) Optical trapping of a single protein. Nano Lett 12(1):402–406. https://doi.org/10.1021/nl203719v

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Zehtabi-Oskuie A, Jiang H, Cyr BR et al (2013) Double nanohole optical trapping: dynamics and protein-antibody co-trapping. Lab Chip 13:2563–2568. https://doi.org/10.1039/C3LC00003F

    Article  CAS  PubMed  Google Scholar 

  21. Kim JD, Lee YG (2014) Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications. Biomed Opt Express 5(8):2471–2480. https://doi.org/10.1364/BOE.5.002471

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reilly TH, Chang SH, Corbman JD et al (2007) Quantitative evaluation of plasmon enhanced Raman scattering from nanoaperture arrays. J Phys Chem C 111(4):1689–1694. https://doi.org/10.1021/jp066802j

    Article  CAS  Google Scholar 

  23. Djaker N, Hostein R, Devaux E et al (2010) Surface enhanced Raman scattering on a single nanometric aperture. J Phys Chem C 114(39):16250–16256. https://doi.org/10.1021/jp104971p

    Article  CAS  Google Scholar 

  24. Aouani H, Mahboub O, Bonod N et al (2011) Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. Nano Lett 11(2):637–644. https://doi.org/10.1021/nl103738d

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Gordon R (2020) Metal nanoapertures and single emitters. Adv Opt Mater 8(20):2001110. https://doi.org/10.1002/adom.202001110

    Article  CAS  Google Scholar 

  26. Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66(7–8):163. https://doi.org/10.1103/PhysRev.66.163

    Article  MathSciNet  ADS  Google Scholar 

  27. Gordon R, Brolo AG, Sinton D et al (2010) Resonant optical transmission through hole-arrays in metal films: physics and applications. Laser Photonics Rev 4(2):311–335. https://doi.org/10.1002/lpor.200810079

    Article  CAS  ADS  Google Scholar 

  28. Thio T, Pellerin KM, Linke RA et al (2001) Enhanced light transmission through a single subwavelength aperture. Opt Lett 26(24):1972–1974. https://doi.org/10.1364/OL.26.001972

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Ebbesen TW, Lezec HJ, Ghaemi H et al (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669. https://doi.org/10.1038/35570

  30. Al Balushi AA, Kotnala A, Wheaton S et al (2015) Label-free free-solution nanoaperture optical tweezers for single molecule protein studies. Analyst 140(14):4760–4778. https://doi.org/10.1039/C4AN02213K

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Verschueren DV, Pud S, Shi X et al (2018) Label-free optical detection of DNA translocations through plasmonic nanopores. ACS Nano 13(1):61–70. https://doi.org/10.1021/acsnano.8b06758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eftekhari F, Escobedo C, Ferreira J et al (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81(11):4308–4311. https://doi.org/10.1021/ac900221y

    Article  CAS  PubMed  Google Scholar 

  33. Yanik AA, Huang M, Artar A et al (2010) Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl Phys Lett 96(2):021101. https://doi.org/10.1063/1.3290633

    Article  CAS  ADS  Google Scholar 

  34. Fan X, White IM (2011) Optofluidic microsystems for chemical and biological analysis. Nat Photonics 5(10):591. https://doi.org/10.1038/nphoton.2011.206

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Jiang H, Sabarinathan J, Manifar T et al (2009) 3-D FDTD analysis of gold-nanoparticle-based photonic crystal on slab waveguide. J Lightwave Technol 27(13):2264–2270. https://doi.org/10.1109/JLT.2008.2006577

    Article  CAS  ADS  Google Scholar 

  36. Jiang H, Markowski J, Sabarinathan J (2009) Near-infrared optical response of thin film pH-sensitive hydrogel coated on a gold nanocrescent array. Opt Express 17(24):21802–21807. https://doi.org/10.1364/OE.17.021802

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Jiang H, Sabarinathan J (2010) Effects of coherent interactions on the sensing characteristics of near-infrared gold nanorings. The Journal of Physical Chemistry C 114(36):15243–15250. https://doi.org/10.1021/jp1003598

    Article  CAS  Google Scholar 

  38. Jiang H, Li T, Yang J et al (2013) Optimization of gold nanoring arrays for biosensing in the fiber-optic communication window. Nanotechnology 24(46):465502. https://doi.org/10.1088/0957-4484/24/46/465502

    Article  CAS  PubMed  Google Scholar 

  39. Jiang H, Li T, Ertorer E et al (2013) A biosensor based on periodic arrays of gold nanodisks under normal transmission. Sens Actuators, A 189:474–480. https://doi.org/10.1016/j.sna.2012.08.041

    Article  CAS  Google Scholar 

  40. Nair RV, Murukeshan VM (2020) (\(\text{ Cu}_2\)O-Au) - Graphene - Au layered structures as efficient near infra - red SERS substrates. Sci Rep 10(1):1–10. https://doi.org/10.1038/s41598-020-60874-x

    Article  CAS  Google Scholar 

  41. Saifur Rahman M, Rikta K, Abdulrazak LF et al (2020) Enhanced performance of SnSe-Graphene hybrid photonic surface plasmon refractive sensor for biosensing applications. Photonics Nanostruct Fundam Appl 39:100779. https://doi.org/10.1016/j.photonics.2020.100779

    Article  Google Scholar 

  42. Shabani L, Mohammadi A, Jalali T (2021) Numerical study of plasmonic effects of Ag nanoparticles embedded in the active layer on performance polymer organic solar cells. Plasmonics 17:491–504. https://doi.org/10.1007/s11468-021-01539-x

    Article  CAS  Google Scholar 

  43. Elrashidi A, Elleithy K (2022) High performance polymer solar cells using grating nanostructure and plasmonic nanoparticles. Polymers 14(5):862. https://doi.org/10.3390/polym14050862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shabani L, Mohammadi A, Jalali T (2022) Performance analysis of polymer bulk heterojunction solar cells with plasmonic nanoparticles embedded into the P3HT:P\(\text{ C}_{61}\)BM active layer using the FDTD method. Polymer Bulletin pp 1–22. https://doi.org/10.1007/s00289-022-04521-7

  45. Alsayed AE, Ghanim AM, Yahia A et al (2023) Giant localized electromagnetic field of highly doped silicon plasmonic nanoantennas. Sci Rep 13(1):5793. https://doi.org/10.1038/s41598-023-32808-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Ansys Lumerical FDTD Solutions (2023). https://www.lumerical.com/

  47. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  ADS  Google Scholar 

  48. De Abajo FG (2002) Light transmission through a single cylindrical hole in a metallic film. Opt Express 10(25):1475–1484. https://doi.org/10.1364/OE.10.001475

    Article  ADS  Google Scholar 

  49. Joannopoulos JD, Meade RD, Johnson SG et al (1995) Photonic crystals: molding the flow of light. Princeton University Press, Princeton, NJ, United States

    Google Scholar 

  50. Johnson SG, Fan S, Villeneuve PR et al (1999) Guided modes in photonic crystal slabs. Phys Rev B 60(8):5751. https://doi.org/10.1103/PhysRevB.60.5751

    Article  CAS  ADS  Google Scholar 

  51. Escobedo C, Brolo AG, Gordon R et al (2010) Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem 82(24):10015–10020. https://doi.org/10.1021/ac101654f

    Article  CAS  PubMed  Google Scholar 

  52. Prakash S, Pinti M, Bhushan B (2012) Theory, fabrication and applications of microfluidic and nanofluidic biosensors. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370(1967):2269–2303. https://doi.org/10.1098/rsta.2011.0498

    Article  CAS  ADS  Google Scholar 

  53. Wang M, Zhao C, Miao X et al (2015) Plasmofluidics: Merging light and fluids at the micro-/nanoscale. Small 11(35):4423–4444. https://doi.org/10.1002/smll.201500970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Escobedo C, Brolo AG, Gordon R et al (2012) Optofluidic concentration: plasmonic nanostructure as concentrator and sensor. Nano Lett 12(3):1592–1596. https://doi.org/10.1021/nl204504s

    Article  CAS  PubMed  ADS  Google Scholar 

  55. COMSOL Multiphysics (2023). https://www.comsol.com/

  56. Tsega EG (2018) Computational fluid dynamics modeling of respiratory airflow in tracheobronchial airways of infant, child, and adult. Comput Math Methods Med 2018:9603451. https://doi.org/10.1155/2018/9603451

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hong SC, Kang JS, Lee JE et al (2015) Continuous aerosol size separator using inertial microfluidics and its application to airborne bacteria and viruses. Lab Chip 15(8):1889–1897. https://doi.org/10.1039/C5LC00079C

    Article  CAS  PubMed  Google Scholar 

  58. Ohannesian N, Misbah I, Lin SH et al (2020) Plasmonic nano-aperture label-free imaging (PANORAMA). Nat Commun 11(1):5805. https://doi.org/10.1038/s41467-020-19678-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

Special thanks to Prof. Claudio Mazzoleni at Michigan Technological University for discussions in Mie theory calculations. Special thanks to Dr. Kenneth Farmer at TSI, Inc., for discussions in aerosol measurement techniques.

Funding

This work was supported by the National Science Foundation Engineering Research Initiation (ERI) program under Award Number 2138534.

Author information

Authors and Affiliations

Authors

Contributions

FDTD and COMSOL simulations, data analysis, data visualization, and drafting original manuscript: S. Judge; initial COMSOL simulation models: J. Jaramillo; conceptualization, theories, validation, editing manuscript, and project supervision: H. Jiang.

Corresponding author

Correspondence to Hao Jiang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors accepted.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 951 KB)

Appendix. List of Symbols

Appendix. List of Symbols

\(d_a\):

Diameter of the nano-orifice

\(d_p\):

Diameter of the nanoparticle

\(E_0\):

Amplitude of the electric field of the incident plane wave

\(|\vec{E}(\vec{r})|\):

Amplitude of the simulated electric field at location \(\vec{r}\)

\(\Delta T\):

Transmission increment caused by the ultrafine particle

\(T_0\):

Transmission of an empty nano-orifice

\(\Delta \widetilde{T}\):

Normalized transmission increment

\(P_0\):

Optical power of light transmitted through empty nano-orifice

\(\Delta P\):

Height of the optical pulse induced by the ultrafine particle

\(P_N\):

Noise level in the optical signal

\(\epsilon _{eff}\):

Effective dielectric constant

\(\epsilon (\vec{r})\):

Material dielectric constant at location \(\vec{r}\)

\(n_0\):

Refractive index of air

\(\epsilon _p\):

Dielectric constant of nanoparticle material

\(\epsilon _0\):

Dielectric constant of air

\(n_p\):

Refractive index of nanoparticle material

\(V_p\):

Volume of dielectric nanoparticle

\(V_m\):

Effective mode volume

\(\vec{r}_p\):

Position of dielectric nanoparticle

\(\vec{r}_c\):

Position of the antinode of the resonance mode

\(\rho _{air}\):

Density of air

\(\mu _{air}\):

Dynamic viscosity of air

U:

Flow velocity of the fluid

L:

Characteristic width of the fluidic channel cross section

\(\vec{u}\):

Fluid velocity field

\(\vec{v}\):

Particle velocity

\(m_p\):

Particle mass

\(\tau _p\):

Particle velocity response time

\(\rho _{p}\):

Density of the particle material

T:

Absolute temperature of the aerosol

\(\zeta\):

Random number in normal distribution

\(k_B\):

Boltzmann constant

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Judge, S., Jaramillo, J. & Jiang, H. Numerical Study of Metal Nano-Orifices for Optical Sizing of Ultrafine Particles in Aerosols. Plasmonics 19, 145–158 (2024). https://doi.org/10.1007/s11468-023-01959-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01959-x

Keywords

Navigation