Skip to main content

Advertisement

Log in

Flexible Broadband Absorber for Solar Energy Harvesting

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, a multi-material flexible solar absorber composed of regularly arranged Ni cross resonators and Ti nano-cylinders on a polydimethylsiloxane (PDMS) substrate with great flexibility and mechanical properties is proposed. The finite-difference time-domain (FDTD) method is utilized to investigate absorption properties of the flexible absorber, including its efficiency in solar energy harvesting. In addition, the underlying mechanisms of the ultra-high absorption properties of the flexible absorber are revealed by employing the electric field distributions and current flow vectors. The results indicate that the proposed flexible absorber exhibits ultra-high absorptance within the spectral band ranging from 400 to 2400 nm with an overall solar energy harvesting efficiency higher than 99%, demonstrating that almost all solar energy will be captured by the proposed flexible absorber. In addition, the ultra-high absorption properties in solar spectrum can be attributed to the plasmon resonances and magnetic polaritons arising from the synergistic effect between nano-crosses and nano-cylinders made of different materials. However, the absorption properties of the flexible absorbers are greatly affected by their geometric parameters and incident angle of the light. Most significantly, the proposed absorbers maintain high absorptance while subjected to large bending and twisting deformations, which enables them easily adapt to the working environment submerged in water because of its flexibility. The present study introduces a novel design strategy for flexible perfect solar absorbers with multi-material nanostructures and a PDMS substrate, promising potential photothermal applications for solar energy, such as solar evaporator for wastewater treatment and desalination under large fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Obama B (2017) The irreversible momentum of clean energy. Science 355:126–129

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Xu X, Nie S, Ding H, Hou FF (2018) Environmental pollution and kidney diseases. Nat Rev Nephrol 14:313–324

    Article  CAS  PubMed  Google Scholar 

  4. Green PA, Vörösmarty CJ, Harrison I, Farrell T, Sáenz L, Fekete BM (2015) Freshwater ecosystem services supporting humans: pivoting from water crisis to water solutions. Global Environ Chang 34:108–118

    Article  Google Scholar 

  5. Gleick PH (1993) Water in crisis. Oxford University Press, New York

    Google Scholar 

  6. Hinrichsen D, Tacio H (2002) The coming freshwater crisis is already here. The linkages between population and water. Washington, DC: Woodrow Wilson International Center for Scholars 1–26

  7. Wang W, Shi Y, Zhang C, Hong S, Shi L, Chang J, Li R, Jin Y, Ong C, Zhuo S (2019) Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation. Nat Commun 10:3012

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Malaeb L, Ayoub GM (2011) Reverse osmosis technology for water treatment: state of the art review. Desalination 267:1–8

    Article  CAS  Google Scholar 

  9. Strathmann H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264:268–288

    Article  CAS  Google Scholar 

  10. Liu J, Chen S, Wang H, Chen X (2015) Calculation of carbon footprints for water diversion and desalination projects. Energy Procedia 75:2483–2494

    Article  CAS  Google Scholar 

  11. Akimoto H (2003) Global air quality and pollution. Science 302:1716–1719

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Ahmed FE, Hashaikeh R, Hilal N (2019) Solar powered desalination-technology, energy and future outlook. Desalination 453:54–76

    Article  CAS  Google Scholar 

  13. Guo Y, Dundas CM, Zhou X, Johnston KP, Yu G (2021) Molecular engineering of hydrogels for rapid water disinfection and sustainable solar vapor generation. Adv Mater 33:2102994

    Article  CAS  Google Scholar 

  14. Wang Z, Yin Q, Zhan Z, Duan H, Cheng P, Zhang C, Chen Y, Dong Z (2023) 3D-printed bionic abnormal shaped microchannel for step lifting transpiration. Int J Extrem Manufact 5:02550

    Article  Google Scholar 

  15. Zhan Z, Chen L, Wang C, Shuai Y, Duan H, Wang Z (2023) Super water-storage self-adhesive gel for solar vapor generation and collection. ACS Appl Mater Interfaces 15(6):8181–8189

    Article  CAS  PubMed  Google Scholar 

  16. Chen L, Duan G, Zhang C, Cheng P, Wang Z (2022) 3D printed hydrogel for soft thermo-responsive smart window. Int J Extrem Manufact 4:025302

    Article  Google Scholar 

  17. Wang Z, Li Y, Gong S, Li W, Duan H, Cheng P, Chen Y, Dong Z (2022) Three-dimensional open water microchannel transpiration-mimetics. ACS Appl Mater Interfaces 14:30435–30442

    Article  CAS  PubMed  Google Scholar 

  18. Nazif KN, Daus A, Hong J, Lee N, Vaziri S, Kumar A, Nitta F, Chen M, Kananian S, Islam R (2021) High-specific-power flexible transition metal dichalcogenide Solar Cells. Nat Commun 12:7034

    Article  ADS  Google Scholar 

  19. Gust D, Moore TA (1989) Mimicking photosynthesis. Science 244(4900):35–41

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Lewis NS (2016) Research opportunities to advance solar energy utilization. Science 351: aad1920

  21. Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J (2016) Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci Adv 2:e1501227

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Tao P, Ni G, Song C, Shang W, Wu J, Zhu J, Chen G, Deng T (2018) Solar-driven interfacial evaporation. Nat. Energy 3:1031–1041

    Google Scholar 

  23. Wang Z, Zhan Z, Chen L, Duan G, Cheng P, Kong H, Chen Y, Duan H (2022) 3D-printed bionic solar evaporator. Sol RRL 6:2101063

    Article  CAS  Google Scholar 

  24. Polman A (2013) Solar steam nanobubbles. ACS Nano 7:15–18

    Article  CAS  PubMed  Google Scholar 

  25. Ghasemi H, Ni G, Marconnet AM, Loomis J, Yerci S, Miljkovic N, Chen G (2014) Solar steam generation by heat localization. Nat Commun 5:4449

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Neumann O, Urban AS, Day J, Lal S, Nordlander P, Halas NJ (2013) Solar vapor generation enabled by nanoparticles. ACS Nano 7:42–49

    Article  CAS  PubMed  Google Scholar 

  27. Wang Z, Liu Z, ZhangC YD, Cheng P, Shuai Y (2022) Notched nanoring wideband absorber for total solar energy harvesting. Sol Energy 243:153–162

    Article  ADS  CAS  Google Scholar 

  28. Wang Z, Qi G, Yang P, Zhang Z, Cheng P (2020) An experimental study of a nearly perfect absorber made of a natural hyperbolic material for harvesting solar energy. J Appl Phy 127:233102

    Article  ADS  CAS  Google Scholar 

  29. Wang Z, Cheng P (2019) Solar energy harvesting by perfect absorbers made of natural hyperbolic material. Nature Springer

  30. Gao M, Zhu L, Peh CK, Ho GW (2019) Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ Sci 12:841–864

    Article  CAS  Google Scholar 

  31. Wang Z, Cheng P (2019) Enhancements of absorption and photothermal conversion of solar energy enabled by surface plasmon resonances in nanoparticles and metamaterials. Int J Heat Mass Tran 140:453–482

    Article  CAS  Google Scholar 

  32. Wang Z, Zhang ZM, Quan X, Cheng P (2018) A numerical study on effects of surrounding medium, material, and geometry of nanoparticles on solar absorption efficiencies. Int J Heat Mass Tran 116:825–832

    Article  CAS  Google Scholar 

  33. Wang Z, Zhang ZM, Quan X, Cheng P (2018) A perfect absorber design using a natural hyperbolic material for harvesting solar energy. Sol Energy 159:329–336

    Article  ADS  CAS  Google Scholar 

  34. Saib A, Bednarz L, Daussin R, Bailly C, Lou X, Thomassin JM, Pagnoulle C, Detrembleur C, Jerome R, Huynen I (2006) Carbon nanotube composites for broadband microwave absorbing materials. IEEE Trans Microwave Theory Tech 54:2745–2754

    Article  ADS  CAS  Google Scholar 

  35. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB, Kuntz JD, Biener MM, Ge Q, Jackson JA, Kucheyev SO, Fang NX, Spadaccini CM (2014) Ultralight, ultrastiff mechanical metamaterials. Science 344:1373–1377

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Shadrivov IV, Kapitanova PV, Maslovski SI, Kivshar YS (2012) Metamaterials controlled with light. Phys Rev Lett 109:083902

    Article  ADS  PubMed  Google Scholar 

  40. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334:333–337

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:517

    Article  ADS  PubMed  Google Scholar 

  43. Liu D, Li Q (2017) Sub-nanometer planar solar absorber. Nano Energy 34:172–180

    Article  CAS  Google Scholar 

  44. Guo Z, Liu X, Li C, Li J, Cai H, Fu M, He D, Wang Y (2021) Near-perfect broadband metamaterial absorbers of truncated nanocones using colloidal lithography. Opt Mater 119:111352

    Article  CAS  Google Scholar 

  45. Das A, Mao C, Cho S, Kim K, Park W (2018) Over 1000-fold enhancement of upconversion luminescence using water-dispersible metal-insulator-metal nanostructures. Nat Commun 9:4828

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Chen Y, Shu Z, Feng Z, La K, Liu Y, Duan H (2020) Reliable patterning, transfer printing and post-assembly of multiscale adhesion-free metallic structures for nanogap device applications. Adv Funct Mater 30:2002549

    Article  CAS  Google Scholar 

  47. Chen R, Yi-Cheng Li, Jia-Ming C, Cao K (2020) Atomic level deposition to extend Moore’s law and beyond. Int J Extreme Manuf 2:022002

    Article  CAS  Google Scholar 

  48. He S, Tian R, Wu W, Wen-Di Li, Wang D (2020) Helium-ion-beam nanofabrication: extreme processes and applications. Int J Extreme Manuf 3:012001

    Article  Google Scholar 

  49. Chen Y, Chen Y, Long J, Shi D, Chen X, Hou M, Gao J, Liu H, He Y, Fan B (2021) Achieving a sub-10 nm nanopore array in silicon by metal-assisted chemical etching and machine learning. Int J Extreme Manuf 3:035104

    Article  CAS  Google Scholar 

  50. Gao J, Luo X, Fang F, Sun J (2021) Fundamentals of atomic and close-to-atomic scale manufacturing: a review. Int J Extreme Manuf 4:012001

    Article  Google Scholar 

  51. Hou X, Li J, Li Y, Tian Y (2022) Intermolecular and surface forces in atomic-scale manufacturing. Int J Extreme Manuf 4:022002

    Article  Google Scholar 

  52. Zhu J, Liu J, Xu T, Yuan S, Zhang Z, Jiang H, Gu H, Zhou R, Liu S (2022) Optical wafer defect inspection at the 10 nm technology node and beyond. Int J Extreme Manuf 4:032001

    Article  Google Scholar 

  53. Cooper TA, Zandavi SH, Ni GW, Tsurimaki Y, Huang Y, Boriskina SV, Chen G (2018) Contactless steam generation and superheating under one sun illumination. Nat Commun 9:5086

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lide DR (2004) CRC handbook of chemistry and physics. CRC Press

    Google Scholar 

  55. Zhang X, Qiu J, Li X, Zhao J, Liu L (2020) Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl Opt 59:2337–2344

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Zhang X, Qiu J, Zhao J, Li X, Liu L (2020) Complex refractive indices measurements of polymers in infrared bands. J Quant Spectrosc Ra 252:107063

    Article  CAS  Google Scholar 

  57. Wang Z, Liu Z, Duan G, Fang L, Duan H (2022) Ultrahigh broadband absorption in metamaterials with electric and magnetic polaritons enabled by multiple materials. Int J Heat Mass Tran 185:122355

    Article  CAS  Google Scholar 

  58. Chau YF, Yeh HH, Tsai DP (2009) Surface plasmon effects excitation from three-pair arrays of silver-shell nanocylinders. Phys Plasmas 16:022303

    Article  ADS  Google Scholar 

  59. Dai Y, Xu H, Wang H, Lu Y, Wang P (2018) Experimental demonstration of high sensitivity for silver rectangular grating-coupled surface plasmon resonance (SPR) sensing. Opt Commun 416:66–70

    Article  ADS  CAS  Google Scholar 

  60. Kasani S, Curtin K, Wu N (2019) Review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics 8:2065–2089

    Article  CAS  Google Scholar 

  61. Liu Z, Duan G, Duan H, Wang Z (2022) Nearly perfect absorption of solar energy by coherent of electric and magnetic polaritons. Sol Energ Mater Sol Cells 240:111688

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China through grant no. 52006056 and the Experiments for Space Exploration Program and the Qian Xuesen Laboratory, China Academy of Space Technology (grant no. TKTSPY-2020–01-04).

Author information

Authors and Affiliations

Authors

Contributions

Zhaolong Wang: conceptualization, methodology, supervision, validation, Writing — review and editing, funding acquisition. Yinbao Wei: software, data curation, writing — original draft. Ce Zhang: data curation, investigation.

Corresponding authors

Correspondence to Zhaolong Wang or Ce Zhang.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wei, Y. & Zhang, C. Flexible Broadband Absorber for Solar Energy Harvesting. Plasmonics 19, 215–225 (2024). https://doi.org/10.1007/s11468-023-01936-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01936-4

Keywords

Navigation