Skip to main content
Log in

Implementing the Dual Functions of Switchable Broadband Absorption and Sensitive Sensing in a VO2-Based Metasurface

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The metadevice with multiple functions in a fixed nanostructure is highly required. In this paper, we numerically achieved the dual functions of switchable broadband absorption and sensitive refractive index (RI) sensing in a fixed fishnet-shaped nanostructure by integrating with the phase change material vanadium dioxide (VO2). Exploiting the insulator-to-metal transition of VO2, the absorption strength could be dynamically switched from 0.07 to 0.97 in a broad terahertz (THz) band. Meanwhile, the same structure with metallic VO2 exhibits highly sensitive RI sensing performance. The sensitivity reaches 1.15 THz/RIU, which makes great progress. The proposed metasurface with dual functions will promote the development and applications of THz nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. George PA, Hui W, Rana F et al (2008) Microfluidic devices for terahertz spectroscopy of biomolecules. Opt Express 16(3):1577–1582. https://doi.org/10.1364/Oe.16.001577

    Article  CAS  PubMed  Google Scholar 

  2. Ni XJ, Wong ZJ, Mrejen M et al (2015) An ultrathin invisibility skin cloak for visible light. Science 349(6254):1310–1314. https://doi.org/10.1126/science.aac9411

    Article  CAS  PubMed  Google Scholar 

  3. Schurig D, Mock JJ, Justice BJ et al (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801):977–980. https://doi.org/10.1126/science.1133628

    Article  CAS  PubMed  Google Scholar 

  4. Lv T, Li Y, Qin C et al (2022) Versatile polarization manipulation in vanadium dioxide-integrated terahertz metamaterial. Opt Express 30(4):5439–5449. https://doi.org/10.1364/OE.447453

    Article  CAS  PubMed  Google Scholar 

  5. Chen HT (2012) Interference theory of metamaterial perfect absorbers. Opt Express 20(7):7165–7172. https://doi.org/10.1364/OE.20.007165

    Article  PubMed  Google Scholar 

  6. Wang Y, Sun T, Paudel T et al (2012) Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Lett 12(1):440–445. https://doi.org/10.1021/nl203763k

    Article  CAS  PubMed  Google Scholar 

  7. Yue L, Wang Y, Cui Z et al (2021) Multi-band terahertz resonant absorption based on an all-dielectric grating metasurface for chlorpyrifos sensing. Opt Express 29(9):13563–13575. https://doi.org/10.1364/OE.423256

    Article  CAS  PubMed  Google Scholar 

  8. Chiang Y-J, Yen T-J (2013) A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission. Appl Phys Lett. https://doi.org/10.1063/1.4774300

    Article  Google Scholar 

  9. Dong G, Qin C, Lv T et al (2020) Dynamic chiroptical responses in transmissive metamaterial using phase-change material. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/ab8516

    Article  Google Scholar 

  10. Kang W, Gao Q, Dai L et al (2020) Dual-controlled tunable terahertz coherent perfect absorption using Dirac semimetal and vanadium dioxide. Results Phys. https://doi.org/10.1016/j.rinp.2020.103688

    Article  Google Scholar 

  11. Lv T, Dong G, Qin C et al (2021) Switchable dual-band to broadband terahertz metamaterial absorber incorporating a VO(2) phase transition. Opt Express 29(4):5437–5447. https://doi.org/10.1364/OE.418020

    Article  PubMed  Google Scholar 

  12. Ding F, Zhong S, Bozhevolnyi SI (2018) Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies. Adv Opt Mater. https://doi.org/10.1002/adom.201701204

    Article  Google Scholar 

  13. Li X, Tang S, Ding F et al (2019) Switchable multifunctional terahertz metasurfaces employing vanadium dioxide. Sci Rep 9(1):5454. https://doi.org/10.1038/s41598-019-41915-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He X, Shi S, Yang X et al (2017) Voltage-tunable terahertz metamaterial based on liquid crystal material for bandpass filters and phase shifters. Integr Ferroelectr 178(1):131–137. https://doi.org/10.1080/10584587.2017.1325278

    Article  CAS  Google Scholar 

  15. Qin F, Chen X, Yi Z et al (2020) Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Sol Energy Mater Sol Cells. https://doi.org/10.1016/j.solmat.2020.110535

    Article  Google Scholar 

  16. Wen Q-Y, Zhang H-W, Yang Q-H et al (2010) Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl Phys Lett. https://doi.org/10.1063/1.3463466

    Article  Google Scholar 

  17. Liu H, Wang ZH, Li L et al (2019) Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber. Sci Rep 9(1):5751. https://doi.org/10.1038/s41598-019-42293-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song Z, Zhang J (2020) Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies. Opt Express 28(8):12487–12497. https://doi.org/10.1364/OE.391066

    Article  PubMed  Google Scholar 

  19. Song Z, Wang K, Li J et al (2018) Broadband tunable terahertz absorber based on vanadium dioxide metamaterials. Opt Express 26(6):7148–7154. https://doi.org/10.1364/OE.26.007148

    Article  CAS  PubMed  Google Scholar 

  20. Wang D, Sun S, Feng Z et al (2020) Enabling switchable and multifunctional terahertz metasurfaces with phase-change material. Opt Mater Express. https://doi.org/10.1364/ome.397173

    Article  Google Scholar 

  21. Badri SH, Gilarlue MM, SaeidNahaei S et al (2022) Narrowband-to-broadband switchable and polarization-insensitive terahertz metasurface absorber enabled by phase-change material. J Opt. https://doi.org/10.1088/2040-8986/ac3c50

    Article  Google Scholar 

  22. Li H, Xu W, Cui Q et al (2020) Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device. Opt Express 28(26):40060–40074. https://doi.org/10.1364/OE.414961

    Article  CAS  PubMed  Google Scholar 

  23. He H, Shang X, Xu L et al (2020) Thermally switchable bifunctional plasmonic metasurface for perfect absorption and polarization conversion based on VO(2). Opt Express 28(4):4563–4570. https://doi.org/10.1364/OE.385900

    Article  PubMed  Google Scholar 

  24. Jiang H, Zhao W, Jiang Y (2016) All-dielectric circular polarizer with nearly unit transmission efficiency based on cascaded tensor Huygens surface. Opt Express 24(16):17738–17745. https://doi.org/10.1364/OE.24.017738

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Han Z, Du Y et al (2021) Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface. Nanophotonics 10(4):1295–1307. https://doi.org/10.1515/nanoph-2020-0582

    Article  CAS  Google Scholar 

  26. Wang Y, Zhu D, Cui Z et al (2020) Properties and Sensing performance of all-dielectric metasurface THz absorbers. IEEE Trans Terahertz Sci Technol 10(6):599–605. https://doi.org/10.1109/tthz.2020.3010164

    Article  CAS  Google Scholar 

  27. Chen F, Cheng Y, Luo H (2020) Temperature tunable narrow-band terahertz metasurface absorber based on InSb micro-cylinder arrays for enhanced sensing application. IEEE Access 8:82981–82988. https://doi.org/10.1109/access.2020.2991331

    Article  Google Scholar 

  28. Cheng Y, Li Z, Cheng Z (2021) Terahertz perfect absorber based on InSb metasurface for both temperature and refractive index sensing. Opt Mater. https://doi.org/10.1016/j.optmat.2021.111129

    Article  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (12004080, 61705046); Funding by Science and Technology Projects in Guangzhou (202201010540).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Theoretical analysis, structure simulation, and data collection were performed by Songliang Zhao, Huan Jiang, Jingyu Wang, Hui Zhang, and Weiren Zhao. Data processing and graph drawing were carried out by Songliang Zhao and Huan Jiang. The first draft of the manuscript is written by Songliang Zhao. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Huan Jiang or Weiren Zhao.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Wang, J., Jiang, H. et al. Implementing the Dual Functions of Switchable Broadband Absorption and Sensitive Sensing in a VO2-Based Metasurface. Plasmonics 18, 2041–2047 (2023). https://doi.org/10.1007/s11468-023-01912-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01912-y

Keywords

Navigation