Skip to main content
Log in

Design and Analysis of Nano Gold Coated Refractive Index Sensor with Asymmetric Multiple Holes

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper proposed a photonic crystal fiber based on the surface plasmon resonance, with rectangular and circular holes. Rectangular air holes reduce confinement losses, and small circular air holes provide better matching of core and plasmonic modes. Noble plasmonic material gold is used to excite the surface plasmon and increases the operating wavelength range (400–950 nm). The analyte is located outside the sensor, which makes it easy to build the sensor. Numerical results display that the suggested sensor displays maximum amplitude sensitivity of 1540 RIU−1, an amplitude resolution of 6.49 × 10−7 RIU, a maximum wavelength sensitivity of 9000 nm/RIU, and a wavelength resolution of 1.11 × 10−5 RIU using the amplitude and wavelength interrogation methods, respectively. In this sensor, because of the presence of gold, chemical stability in the environment is high. In addition, the suggested sensor is very promising for medical and pharmaceutical measurement and diagnostic applications due to its high sensitivity, easy diagnosis, and easy manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12.

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. Fallahi V, Kordrostami Z, Hosseini M (2023) A solution for detection of ethanol and methanol with overlapping refractive indexes based on photonic crystal ring resonator optical sensors. IEEE Sens J

  2. Fallahi V et al (2021) Design and optimization of an ultra-fast symmetrical 4× 2 encoder based on 2D photonic crystal nano-resonators for integrated optical circuits. Opt Quant Electron 53:1–18

    Article  Google Scholar 

  3. Yang T et al (2021) A highly birefringent photonic crystal fiber for terahertz spectroscopic chemical sensing. Sensors 21(5):1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guzmán-Sepúlveda JR, Guzmán-Cabrera R, Castillo-Guzmán AA (2021) Optical sensing using fiber-optic multimode interference devices: a review of nonconventional sensing schemes. Sensors 21(5):1862

    Article  PubMed  PubMed Central  Google Scholar 

  5. Britto EC, SM Nizar, Krishnan P (2022) A highly sensitive photonic crystal fiber gas sensor for the detection of sulfur dioxide. Silicon 1–10

  6. Wu Y et al (2021) Photocatalytic optical fibers for degradation of organic pollutants in wastewater: a review. Environ Chem Lett 19(2):1335–1346

    Article  CAS  Google Scholar 

  7. Asaduzzaman S et al (2022) Hexa-sectored square photonic crystal fiber for blood serum and plasma sensing with ultralow confinement loss. Appl Phys A 128(6):1–11

    Article  Google Scholar 

  8. Kuiri B et al (2022) Design and optimization of photonic crystal fiber with low confinement loss guiding 98 OAM modes in THz band. Opt Fiber Technol 68:102752

    Article  Google Scholar 

  9. Almawgani AH et al (2022) Design of a novel protein sensor of high sensitivity using a defective ternary photonic crystal nanostructure. Silicon 1–8

  10. Bing P et al (2022) A plasmonic sensor based on D-shaped dual-core microchannel photonic crystal fiber. Plasmonics 17(4):1471–1478

    Article  CAS  Google Scholar 

  11. Meng X et al (2022) High-performance plasmonic sensor based on photonic crystal fiber for refractive index and temperature sensing. Infrared Phys Technol 122:104036

    Article  CAS  Google Scholar 

  12. Soghra G, Jamal B, Bahar M (2022) Design and analysis of surface plasmon resonance based photonic crystal fiber sensor employing gold nanowires. Optik 260:169026

    Article  CAS  Google Scholar 

  13. Andersson J et al (2022) Surface plasmon resonance sensing with thin films of palladium and platinum–quantitative and real-time analysis. Phys Chem Chem Phys 24(7):4588–4594

    Article  CAS  PubMed  Google Scholar 

  14. Falah AAS, Wong WR, Adikan FRM (2022) Single-mode eccentric-core D-shaped photonic crystal fiber surface plasmon resonance sensor. Opt Laser Technol 145:107474

    Article  CAS  Google Scholar 

  15. Kumar D, Sharma M, Singh V (2022) Surface plasmon resonance implemented silver thin film PCF sensor with multiple–hole microstructure for wide ranged refractive index detection. Materials Today: Proc

  16. Mei C et al (2022) Design of dual-core photonic crystal fiber for temperature sensor based on surface plasmon resonance effect. Opt Commun 508:127838

    Article  CAS  Google Scholar 

  17. Srivastava R et al (2022) Micro-channel plasmon sensor based on a Dshaped photonic crystal fiber for malaria diagnosis with improved performance. IEEE Sens J

  18. Wang S, Li S (2019) Surface plasmon resonance sensor based on symmetrical side-polished dual-core photonic crystal fiber. Opt Fiber Technol 51:96–100

    Article  CAS  Google Scholar 

  19. Liu C et al (2020) Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings. Opt Commun 464:125496

    Article  CAS  Google Scholar 

  20. Liu Q et al (2020) Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film. Opt Mater 102:109800

    Article  CAS  Google Scholar 

  21. Haque E et al (2018) Surface plasmon resonance sensor based on modified $ D $-shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sens J 18(20):8287–8293

    Article  CAS  Google Scholar 

  22. Qu Y et al (2022) A novel photonic crystal fiber refractive index sensor with ultra wide detection range based on surface plasmon resonance effect. Optik 169287

  23. Bing P et al (2020) Analysis of dual-channel simultaneous detection of photonic crystal fiber sensors. Plasmonics 15:1071–1076

    Article  CAS  Google Scholar 

  24. Sakib MN et al (2019) High performance dual core D-shape PCF-SPR sensor modeling employing gold coat. Results Phys 15:102788

    Article  Google Scholar 

  25. Kaur V, Singh S (2019) Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications. Opt Fiber Technol 48:159–164

    Article  CAS  Google Scholar 

  26. Ramola A, Marwaha A, Singh S (2021) Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Appl Phys A 127(9):1–20

    Article  Google Scholar 

  27. Haider F et al (2018) Propagation controlled photonic crystal fiber-based plasmonic sensor via scaled-down approach. IEEE Sens J 19(3):962–969

    Article  Google Scholar 

  28. Islam MR et al (2022) Design and analysis of a QC-SPR-PCF sensor for multipurpose sensing with supremely high FOM. Appl Nanosci 12(1):29–45

    Article  CAS  Google Scholar 

  29. Singh S, Prajapati Y (2020) TiO2/gold-graphene hybrid solid core SPR based PCF RI sensor for sensitivity enhancement. Optik 224:165525

    Article  CAS  Google Scholar 

  30. Islam MR et al (2020) Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor. Results Phys 19:103501

    Article  Google Scholar 

  31. Rahman M et al (2022) Refractometric THz sensing of blood components in a photonic crystal fiber platform. Braz J Phys 52(2):1–12

    Article  Google Scholar 

  32. Ramani U et al (2020) Study of highly sensitivity metal wires assisted photonic crystal fiber based refractive index sensor. Opt Quant Electron 52(12):1–13

    Article  Google Scholar 

  33. Jain S, Choudhary K, Kumar S (2022) Photonic crystal fiber-based SPR sensor for broad range of refractive index sensing applications. Opt Fiber Technol 73:103030

    Article  CAS  Google Scholar 

  34. Wang Y et al (2021) Trapezium-shaped groove photonic crystal fiber plasmon sensor for low refractive index detection. Sens Bio-Sens Res 34:100452

    Article  Google Scholar 

  35. Rahaman ME et al (2021) Glucose level measurement using photonic crystal fiber–based plasmonic sensor. Plasmonics 1–11

  36. Dong J et al (2022) Design and analysis of surface plasmon resonance sensor based on multi-core photonic crystal fiber. Optik 266:169641

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Seyede Mahboobeh Mousavi monazah: conceptualization, methodology, visualization, data curation, writing-original draft. Farzin Emami: project administration, writing—review and editing. Mohammad Reza Salehi: supervision and project administration.

Corresponding author

Correspondence to Seyede Mahboobeh Mousavi Monazah.

Ethics declarations

Ethical Approval

This declaration is “not applicable.”

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi Monazah, S.M., Emami, F. & Salehi, M.R. Design and Analysis of Nano Gold Coated Refractive Index Sensor with Asymmetric Multiple Holes. Plasmonics 18, 931–940 (2023). https://doi.org/10.1007/s11468-023-01823-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01823-y

Keywords

Navigation