Skip to main content
Log in

Applications of Tunable Mid-Infrared Plasmonic Square-Nanoring Resonator Based on Graphene Nanoribbon

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, different structures are designed based on graphene square-nanoring resonator (GSNR) and simulated by the three-dimensional finite-difference time-domain (3D-FDTD) method. Depending on the location and number of graphene nanoribbons (GNR), the proposed structures can be utilized as a band-pass filter, wavelength demultiplexer, or power splitter in the mid-infrared (MIR) wavelengths. The tunability of the suggested assemblies may be controlled simply by changing the dimensions and/or the chemical potential of the GSNRs. Benefiting from the nanoscale and ultra-compact GNRs, these structures can be proposed as basic blocks for optical computing and signal processing in the MIR wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

All datasets generated and/or analyzed during this study are available from the corresponding author on reasonable request.

Code Availability

The code used during the current study is available from the corresponding author on reasonable request.

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  Google Scholar 

  2. Srituravanich W, Fang N, Sun C, Luo Q, Zhang X (2004) Plasmonic nanolithography. Nano Lett 4(6):1085–1088

    Article  CAS  Google Scholar 

  3. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083):508–511

    Article  CAS  Google Scholar 

  4. Wang TB, Wen XW, Yin CP, Wang HZ (2009) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17(26):24096–24101

    Article  CAS  Google Scholar 

  5. Zou CL, Sun FW, Dong CH, Ren XF, Cui JM, Chen XD, Han ZF, Guo GC (2011) Broadband integrated polarization beam splitter with surface plasmon. Opt Lett 36(18):3630–3632

    Article  Google Scholar 

  6. Wang G, Lu H, Liu X, Mao D, Duan L (2011) Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Opt Express 19(4):3513–3518

    Article  CAS  Google Scholar 

  7. Bashiri S, Fasihi K (2020) An all-optical 1× 2 demultiplexer using Kerr nonlinear nano-plasmonic switches. Plasmonics 15(2):449–456

    Article  Google Scholar 

  8. Garcia de Abajo FJ (2014) Graphene plasmonics: challenges and opportunities. ACS Photon 1(3):135–152

    Article  CAS  Google Scholar 

  9. Bonaccorso F, Sun Z, Hasan T, Ferrari A (2010) Graphene photonics and optoelectronics. Nature Photon 4(9):611

    Article  CAS  Google Scholar 

  10. Huidobro PA, Kraft M, Kun R, Maier SA, Pendry JB (2016) Graphene plasmons and transformation optics. J Opt 18(4):044024

  11. Novoselov KS, Geim A (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  Google Scholar 

  12. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294

    Article  CAS  Google Scholar 

  13. Riedl C, Coletti C, Starke U (2010) Starke, Structural and electronic properties of epitaxial graphene on SiC (0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation. J Phys D: Appl Phys 43(37):374009

  14. Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen YR (2008) Gate-variable optical transitions in graphene. Science 320(5873):206–209

    Article  CAS  Google Scholar 

  15. Jablan M, Buljan H, Soljačić M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80(24):245435

  16. Yao Y, Kats MA, Genevet P, Yu N, Song Y, Kong J, Capasso F (2013) Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 13(3):1257–1264

    Article  CAS  Google Scholar 

  17. Wu Z, Chen Y, Zhang T, Shao Z, Wen Y, Xu P, Zhang Y, Yu S (2017) Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators. J Opt 19(4):045801

  18. Lu Z, Zhao W (2012) Nanoscale electro-optic modulators based on graphene-slot waveguides. J Opt Soc Am B 29(6):1490–1496

    Article  CAS  Google Scholar 

  19. Huang J, Song Z (2021) Low-loss graphene waveguide modulator for mid-infrared waves. IEEE Photo J 13(2):1–10

    Google Scholar 

  20. Liu W, Xu J, Song Z (2021) Bifunctional terahertz modulator for beam steering and broadband absorption based on a hybrid structure of graphene and vanadium dioxide. Opt Express 29(15):23331–23340

    Article  CAS  Google Scholar 

  21. Bahadori-Haghighi S, Ghayour R, Sheikhi MH (2017) Three-dimensional analysis of an ultrashort optical cross-bar switch based on a graphene plasmonic coupler. J Lightwave Technol 35(11):2211–2217

    Article  CAS  Google Scholar 

  22. Liu X, Liu G, Tang P, Fu G, Du G, Chen Q, Liu Z (2018) Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers. Carbon 140:362–367

    Article  CAS  Google Scholar 

  23. Janfaza M, Mansouri-Birjandi MA, Tavousi A (2019) Proposal for a graphene nanoribbon assisted mid-infrared band-stop/band-pass filter based on Bragg gratings. Opt Commun 440:75–82

    Article  CAS  Google Scholar 

  24. Janfaza M, Mansouri-Birjandi MA, Tavousi A (2017) Tunable plasmonic band-pass filter based on Fabry-Perot graphene nanoribbons. Appl Phys B 123(10):262

    Article  Google Scholar 

  25. Tavousi A, Mansouri-Birjandi MA, Janfaza M (2018) Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering. App Opt 57(20):5800–5805

    Article  CAS  Google Scholar 

  26. Feng Y, Liu Y, Shi Y, Wang X, Dong D (2017) An ultra-compact tunable intersection structure based on graphene nanoribbon. J Phys D: Appl Phys 50(18):185101

  27. Yang J, Xin H, Han Y, Chen D, Zhang J, Huang J, Zhang Z (2017) Ultra-compact beam splitter and filter based on a graphene plasmon waveguide. App Opt 56(35):9814–9821

    Article  CAS  Google Scholar 

  28. Lee SH, Choi M, Kim TT, Lee S, Liu M, Yin X, Choi HK, Lee SS, Choi CG, Choi SY, Zhang X (2012) Switching terahertz waves with gate-controlled active graphene metamaterials. Nature Mater 11(11):936–941

  29. He X (2015) Tunable terahertz graphene metamaterials. Carbon 82:229–237

    Article  CAS  Google Scholar 

  30. Zhang M, Song Z (2021) Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption. Opt Express 29(14):21551–21561

    Article  CAS  Google Scholar 

  31. Liu L, Liu W, Song Z (2020) Ultra-broadband terahertz absorber based on a multilayer graphene metamaterial. J Appl Phys 128(9):093104

  32. Asgari S, Rahmanzadeh M (2020) Tunable circular conversion dichroism and asymmetric transmission of terahertz graphene metasurface composed of split rings. Opt Commun 456:124623

  33. Shi S-F, Zeng B, Han H-L, Hong X, Tsai H-Z, Jung H-S, Zettl A, Crommie MF, Wang F (2015) Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures. Nano Lett 15(1):372–377

    Article  CAS  Google Scholar 

  34. Han X, Wang T, Li X, Xiao S, Zhu Y (2015) Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate. Opt Express 23(25):31945–31955

    Article  CAS  Google Scholar 

  35. Janfaza M, Mansouri-Birjandi MA, Tavousi A (2018) Dynamic switching between single and double plasmon induced reflection through graphene nanoribbons based structure. Mater Res Express 5(11):115022

  36. Janfaza M, Mansouri-Birjandi MA, Tavousi A (2018) Tunable plasmon-induced reflection based on graphene nanoribbon Fabry-Perot resonator and nanodisks. Opt Mater 84:675–680

    Article  CAS  Google Scholar 

  37. Zhuang H, Kong F, Li K, Sheng S (2015) Plasmonic bandpass filter based on graphene nanoribbon. Appl Opt 54(10):2558–2564

    Article  CAS  Google Scholar 

  38. He S, Zhang X, He Y (2013) Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI. Opt Express 21(25):30664–30673

    Article  Google Scholar 

  39. Nikitin AY, Alonso-González P, Vélez S, Mastel S, Centeno A, Pesquera A, Zurutuza A, Casanova F, Hueso LE, Koppens FH, Hillenbrand R (2016) Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nature Photon 10(4):239–243

  40. Fei Z, Goldflam MD, Wu JS, Dai S, Wagner M, McLeod AS, Liu MK, Post KW, Zhu S, Janssen GC, Fogler MM (2015) Edge and surface plasmons in graphene nanoribbons. Nano Lett 15(12):8271–8276

  41. Jiang B-Y, Mele EJ, Fogler MM (2018) Theory of plasmon reflection by a 1D junction. Opt Express 26(13):17209–17226

    Article  CAS  Google Scholar 

  42. Kang JH, Wang S, Wang F (2019) Tunneling of two-dimensional surface polaritons through nanogaps in atomically thin crystals. Phys Rev B 99(16):165408

  43. Palik ED (1998) Handbook of optical constants of solids. (Academic) vol 3

  44. Farmer DB, Rodrigo D, Low T, Avouris P (2015) Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene. Nano lett 15(4):2582–2587

    Article  CAS  Google Scholar 

  45. Rodrigo D, Tittl A, Limaj O, De Abajo FJG, Pruneri V, Altug H (2017) Double-layer graphene for enhanced tunable infrared plasmonics. Light: Sci Appl 6(6):e16277–e16277

    CAS  Google Scholar 

  46. Nasari H, Abrishamian MS (2014) All-optical tunable notch filter by use of Kerr nonlinearity in the graphene microribbon array. J Opt Soc Am B 31(7):1691–1697

    Article  CAS  Google Scholar 

  47. Ju L, Baisong G, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR (2011) Graphene plasmonics for tunable terahertz metamaterials. Nature nanotechno 6(10):630–634

    Article  CAS  Google Scholar 

  48. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large area synthesis of high quality and uniform graphene films on copper foils. Science 324(5932):1312–1314

    Article  CAS  Google Scholar 

  49. Chen PY, Alu A (2011) Atomically thin surface cloak using graphene monolayers. ACS Nano 5(7):5855–5863

    Article  CAS  Google Scholar 

  50. Maleki M, Mehran M, Mokhtari A (2020) Design of a near-infrared plasmonic gas sensor based on graphene nanogratings. J Opt Soc Am B 37(11):3478–3486

    Article  CAS  Google Scholar 

  51. Wang B, Zhang X, García-Vidal FJ, Yuan X, Teng J (2012) Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays. Phys Rev Lett 109(7):073901

  52. Wang B, Zhang X, Yuan X, Teng J (2012) Optical coupling of surface plasmons between graphene sheets. Appl Phys Lett 100(13):131111

  53. Li HJ, Wang LL, Sun B, Huang ZR, Zhai X (2014) Controlling mid-infrared surface plasmon polaritons in the parallel graphene pair. Appl Phys Express 7(12):125101

  54. Li HJ, Wang LL, Huang ZR, Sun B, Zhai X (2015) Tunable mid-infrared plasmonic anti-symmetric coupling resonator based on the parallel interlaced graphene pair. Plasmonics 10(1):39–44

    Article  Google Scholar 

  55. He MD, Wang KJ, Wang L, Li JB, Liu JQ, Huang ZR, Wang L, Wang L, Hu WD, Chen X (2014) Graphene-based terahertz tunable plasmonic directional coupler. Appl Phys Lett 105(8):081903

  56. Huang ZR, Wang LL, He MD, Li HJ, Sun B, Liu JQ, Zhai X (2015) An ultra-compact tunable Bragg reflector based on edge propagating plasmons in graphene nanoribbon. J Modern Opt 6(7):514–518

  57. Zhang S, Ji W, Yin R, Li X, Gong Z, Lv L (2017) Full bandwidth wavelength division multiplexer/demultiplexer based on MMI. IEEE Photon Technol Lett 30(1):107–110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Design, methodology, and numerical simulations of the paper: Morteza Janfaza. Writing of the manuscript: Morteza Janfaza. Writing–comments and suggestions: Mohammad Ali Mansouri-Birjandi and Alireza Tavousi.

Corresponding author

Correspondence to Mohammad Ali Mansouri-Birjandi.

Ethics declarations

Ethics Approval

The authors have followed the ethical principles and accurate references to scientific sources in the original paper.

Consent to Participate

All the authors have contributed to this article.

Consent for Publication

All the authors agree to publish this article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janfaza, M., Mansouri-Birjandi, M.A. & Tavousi, A. Applications of Tunable Mid-Infrared Plasmonic Square-Nanoring Resonator Based on Graphene Nanoribbon. Plasmonics 17, 479–490 (2022). https://doi.org/10.1007/s11468-021-01538-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01538-y

Keywords

Navigation